The European Physical Journal Special Topics

, Volume 226, Issue 4, pp 595–604 | Cite as

Exploring first-order phase transitions with population annealing

  • Lev Yu. Barash
  • Martin Weigel
  • Lev N. Shchur
  • Wolfhard Janke
Regular Article
Part of the following topical collections:
  1. Recent Advances in Phase Transitions and Critical Phenomena

Abstract

Population annealing is a hybrid of sequential and Markov chain Monte Carlo methods geared towards the efficient parallel simulation of systems with complex free-energy landscapes. Systems with first-order phase transitions are among the problems in computational physics that are difficult to tackle with standard methods such as local-update simulations in the canonical ensemble, for example with the Metropolis algorithm. It is hence interesting to see whether such transitions can be more easily studied using population annealing. We report here our preliminary observations from population annealing runs for the two-dimensional Potts model with q > 4, where it undergoes a first-order transition.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. 1.
    D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, 4th edn. (Cambridge University Press, Cambridge, 2015)Google Scholar
  2. 2.
    A. Doucet, N. de Freitas, N. Gordon (eds.), Sequential Monte Carlo Methods in Practice (Springer, New York, 2001)Google Scholar
  3. 3.
    P. Grassberger, Comput. Phys. Commun. 147, 64 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Iba, Trans. Jpn. Soc. Artif. Intell. 16, 279 (2001)CrossRefGoogle Scholar
  5. 5.
    K. Hukushima, Y. Iba, AIP Conf. Proc. 690, 200 (2003)Google Scholar
  6. 6.
    J. Machta, Phys. Rev. E 82, 026704 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    J. Machta, R.S. Ellis, J. Stat. Phys. 144, 541 (2011)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    W. Wang, J. Machta, H.G. Katzgraber, Phys. Rev. E 92, 063307 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer, D.A. Patterson, W.L. Plishker, J. Shalf, S.W. Williams, et al., Tech. Rep., Technical Report UCB/EECS-2006-183, EECS Department, University of California, Berkeley (2006)Google Scholar
  10. 10.
    J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, J.C. Phillips, Proc. IEEE 96, 879 (2008)CrossRefGoogle Scholar
  11. 11.
    L.Yu. Barash, M. Weigel, M. Borovsky, W. Janke, L.N. Shchur, preprint arXiv: 1703.03676
  12. 12.
    K. Binder, Rep. Prog. Phys. 50, 783 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    W. Janke, in Computer Simulations of Surfaces and Interfaces, edited by B. Dünweg, D.P. Landau, A.I. Milchev (Kluwer Academic Publishers, Dordrecht, 2003), vol. 114 of NATO Science Series, II. Mathematics, Physics and Chemistry, pp. 111–135, proceedings of the NATO Advanced Study Institute, Albena, Bulgaria, 9–20 September 2002Google Scholar
  14. 14.
    B.A. Berg, T. Neuhaus, Phys. Rev. Lett. 68, 9 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    F. Wang, D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    W. Wang, J. Machta, H.G. Katzgraber, Phys. Rev. B 90, 184412 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    W. Wang, J. Machta, H.G. Katzgraber, Phys. Rev. B 92, 094410 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    M. Weigel, L.Yu. Barash, M. Borovský, L.N. Shchur, W. Janke (in preparation)Google Scholar
  19. 19.
    W. Wang, J. Machta, H.G. Katzgraber, Phys. Rev. E 92, 013303 (2015)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    M. Borovskỳ, M. Weigel, L.Yu. Barash, M. Žukovič, EPJ Web Conf. 108, 02016 (2016)Google Scholar
  21. 21.
    F.Y. Wu, Rev. Mod. Phys. 54, 235 (1982)ADSCrossRefGoogle Scholar
  22. 22.
    R.J. Baxter, J. Phys. C 6, L445 (1973)ADSCrossRefGoogle Scholar
  23. 23.
    V. Beffara, H. Duminil-Copin, Probab. Theor. Rel. 153, 511 (2012)CrossRefGoogle Scholar
  24. 24.
    H. Duminil-Copin, V. Sidoravicius, V. Tassion, Commun. Math. Phys. 349, 47 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    H. Duminil-Copin, M. Gagnebin, M. Harel, I. Manolescu, V. Tassion, preprint arXiv: 1611.09877
  26. 26.
    C. Borgs, W. Janke, J. Physique I 2, 2011 (1992)ADSCrossRefGoogle Scholar
  27. 27.
    B.A. Berg, U.M. Heller, H. Meyer-Ortmanns, A. Velytsky, Phys. Rev. D 69, 034501 (2004)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Science Center in ChernogolovkaChernogolovkaRussia
  2. 2.Landau Institute for Theoretical PhysicsChernogolovkaRussia
  3. 3.Applied Mathematics Research Centre, Coventry UniversityCoventryUK
  4. 4.National Research University Higher School of EconomicsMoscowRussia
  5. 5.Institut für Theoretische Physik, Universität LeipzigLeipzigGermany

Personalised recommendations