The European Physical Journal Special Topics

, Volume 226, Issue 15, pp 3287–3301 | Cite as

Mixing chaos modulations for secure communications in OFDM systems

  • Chatura Seneviratne
  • Henry Leung
Regular Article
Part of the following topical collections:
  1. Challenges in the Analysis of Complex Systems: Prediction, Causality and Communication


In this paper, we consider a novel chaotic OFDM communication scheme is to improve the physical layer security. By secure communication we refer to physical layer security that provides low probability of detection (LPD)/low probability of intercept (LPI) transmission. A mixture of chaotic modulation schemes is used to generate chaotically modulated symbols for each subcarrier of the OFDM transmitter. At the receiver, different demodulators are combined together for the different modulation schemes for enhanced security. Time domain, frequency domain and statistical randomness tests show that transmit signals are indistinguishable from background noise. BER performance comparison shows that the physical layer security of the proposed scheme comes with a slight performance degradation compared to conventional OFDM communication systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. van Nee, R. Prasad, OFDM for Wireless Multimedia Communications (Artech House Inc., Norwood, MA, USA, 1987) Google Scholar
  2. 2.
    M.E. Hellman, IEEE Commun. Mag. 40, 42 (2002) CrossRefGoogle Scholar
  3. 3.
    S.V. Kartalopoulos, IEEE Commun. Mag. 44, 146 (2006) CrossRefGoogle Scholar
  4. 4.
    Y.-S. Shiu et al., IEEE Wirel. Commun. 18, 66 (2011) CrossRefGoogle Scholar
  5. 5.
    A. Mukherjee et al., IEEE Commun. Surv. Tutor. 16, 1550 (2014) CrossRefGoogle Scholar
  6. 6.
    R.L. Peterson, R.E. Ziemer, D.E. Borth, Introduction to spread-spectrum communications (Prentice Hall, New Jersey, 1995) Google Scholar
  7. 7.
    A.J. Viterbi, CDMA: Principles of Spread Spectrum Communication (Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1995) Google Scholar
  8. 8.
    R. Michaels, Digital Chaotic Communications, PhD Dissertation, Georgia Institute of Technology, 2009 Google Scholar
  9. 9.
    G. Heidari-Bateni, C.D. McGillem, IEEE Trans. Commun. 42, 1524 (1994) CrossRefGoogle Scholar
  10. 10.
    G. Kaddoum, IEEE Access. 4, 2621 (2016) CrossRefGoogle Scholar
  11. 11.
    J. Yu, Y.-D. Yao, IEEE Trans. Wirel. Commun. 4, 390 (2005) CrossRefGoogle Scholar
  12. 12.
    S. Kodba, M. Perc, M. Marhl, Eur. J. Phys. 26, 205 (2004) CrossRefGoogle Scholar
  13. 13.
    G.K. Rohde, J.M. Nichols, F. Bucholtz, Chaos: Interdiscip. J. Nonlinear Sci. 18, 013114 (2008) CrossRefGoogle Scholar
  14. 14.
    G. Kolumbán, M. Peter Kennedy, L.O. Chua, IEEE Trans. Circ. Syst. I: Fundam. Theor. Appl. 45, 1129 (1998) CrossRefGoogle Scholar
  15. 15.
    M. Sushchik, L.S. Tsimring, A.R. Volkovskii, IEEE Trans. Circ. Syst. I: Fundam. Theor. Appl. 47, 1684 (2000) CrossRefGoogle Scholar
  16. 16.
    S. Manickam Rathinakumar, B. Radunovic, M.K. Marina, ShiftFFT: An Efficient Approach to Mitigate Adjacent Channel Interference in OFDM Systems, in Proceedings of the 2nd International Workshop on Hot Topics in Wireless (HotWireless’15) (ACM, New York, USA, 2015) Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations