The European Physical Journal Special Topics

, Volume 226, Issue 4, pp 667–681 | Cite as

Single-chain behavior of poly(3-hexylthiophene)

  • Momchil IvanovEmail author
  • Jonathan GrossEmail author
  • Wolfhard JankeEmail author
Regular Article
Part of the following topical collections:
  1. Recent Advances in Phase Transitions and Critical Phenomena


Poly(3-hexylthiophene) (P3HT) has been in the focus of recent studies due to its promising future use in organic photovoltaics, electronics and photonics. Recent publications investigate the melt behavior of P3HT, its interaction with other molecules, mainly various fullerene derivates, and isolated chains interacting with substrates. In this work we lay the focus on the single-chain properties of P3HT in vacuum. We compare structural properties obtained from simulations using two coarse-grained models and an atomistic model of the polymer for various chain lengths and temperatures.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Hu, editor, Organic Optoelectronics (Wiley-VCH, Weinheim, 2013)Google Scholar
  2. 2.
    G. Giri, E. Verploegen, S.C.B. Mannsfeld, S. Atahan-Evrenk, D.H. Kim, S.Y. Lee, H.A. Becerril, A. Aspuru-Guzik, M.F. Toney, Z. Bao, Nature 480, 504 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Y.Z. Wang, Q. Wang, H.Y. Xie, L.P. Ho, D.M.F. Tan, Y.Y. Diao, W. Chen, X.N. Xie, Nanoscale 4, 3725 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    J.G. Labram, E.B. Domingo, N. Stingelin, D.D.C. Bradley, T.D. Anthopoulos, Adv. Funct. Mater. 21, 356 (2011)CrossRefGoogle Scholar
  5. 5.
    L.-W. Chong, Y.-N. Chou, Y.-L. Lee, T.-C. Wena, T.-F. Guo, Org. Electron. 10, 1141 (2009)CrossRefGoogle Scholar
  6. 6.
    R.J. Kline, M.D. Mcgehee, M.F. Toney, Nat. Mater. 5, 222 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    S. Wang, A. Kiersnowski, W. Pisula, K. Müllen, J. Am. Chem. Soc. 134, 4015 (2012)CrossRefGoogle Scholar
  8. 8.
    X. Ma, Y. Guo, T. Wang, Z. Su, J. Chem. Phys. 139, 014701 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    L. Scifo, M. Dubois, M. Brun, P. Rannou, S. Latil, A. Rubio, B. Grévin, Nano Lett. 6, 1711 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    S. Förster, W. Widdra, J. Chem. Phys. 141, 054713 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    S. Förster, E. Kohl, M. Ivanov, J. Gross, W. Widdra, W. Janke, J. Chem. Phys. 141, 164701 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    C.-K. Lee, C.-W. Pao, C.-W. Chu, Energy Environ. Sci. 4, 4124 (2011)CrossRefGoogle Scholar
  13. 13.
    D.M. Huang, R. Faller, K. Do, A.J. Moule, J. Chem. Theory Comput. 6, 526 (2009)CrossRefGoogle Scholar
  14. 14.
    V. Marcon, G. Raos, J. Am. Chem. Soc. 108, 18053 (2004)Google Scholar
  15. 15.
    V. Marcon, G. Raos, J. Am. Chem. Soc. 128, 1408 (2006)CrossRefGoogle Scholar
  16. 16.
    J. Gross, M. Ivanov, W. Janke, J. Phys.: Conf. Ser. 750, 012009 (2016)Google Scholar
  17. 17.
    A. Marrocci, D. Lanari, A. Facchetti, L. Vaccaro, Energy Environ. Sci. 5, 8457 (2012)CrossRefGoogle Scholar
  18. 18.
    T. Adachi, J. Brazard, R.J. Ono, B. Hanson, M.C. Traub, Z.-Q. Wu, Z. Li, J.C. Bolinger, V. Ganesan, C.W. Bielawski, D.A. Vanden Bout, P.F. Barbara, J. Phys. Chem. Lett. 2, 1400 (2011)CrossRefGoogle Scholar
  19. 19.
    Z. Hu, J. Liu, L. Simon-Bower, L. Zhai, A.J. Gesquiere, J. Phys. Chem. B. 117, 4461 (2013)CrossRefGoogle Scholar
  20. 20.
    T.T. To, S. Adams, Nanosci. Nanotechnol. Lett. 4, 703 (2012)CrossRefGoogle Scholar
  21. 21.
    T.T. To, S. Adams, Phys. Chem. Chem. Phys. 16, 4653 (2014)CrossRefGoogle Scholar
  22. 22.
    D.M. Huang, R. Faller, K. Do, A.J. Moule, Supporting Information, J. Chem. Theory Comput. 6, 526 (2009)CrossRefGoogle Scholar
  23. 23.
    W.L. Jorgensen, D.S. Maxwell, J. Tirando-Rivers, J. Am. Chem. Soc. 118, 11225 (1996)CrossRefGoogle Scholar
  24. 24.
    K.N. Schwarz, T.W. Kee, D.M. Huang, Nanoscale 5, 2017 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    H.J.C. Berendsen, D. van der Spoel, R. van Drunen, Comp. Phys. Comm. 91, 43 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    E. Lindahl, B. Hess, D. van der Spoel, J. Mol. Mod. 7, 306 (2001)CrossRefGoogle Scholar
  27. 27.
    D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, J. Comp. Chem. 26, 1701 (2005)CrossRefGoogle Scholar
  28. 28.
    B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008)CrossRefGoogle Scholar
  29. 29.
    S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M.R. Shirts, J.C. Smith, P.M. Kasson, D. van der Spoel, B. Hess, E. Lindahl, Bioinformatics 29, 845 (2013)CrossRefGoogle Scholar
  30. 30.
    K. Hukushima, K. Nemoto, J. Phys. Soc. Jpn 65, 1604 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    C.J. Geyer, in Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface, American Statistical Association (New York, 1991), p. 156Google Scholar
  32. 32.
    H.-P. Hsu, W. Paul, S. Rathgeber, K. Binder, Macromolecules 43, 1592 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    S. Plimpton, J. Comp. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Institut für Theoretische Physik, Universität LeipzigLeipzigGermany

Personalised recommendations