Advertisement

The European Physical Journal Special Topics

, Volume 226, Issue 4, pp 605–625 | Cite as

From dynamical scaling to local scale-invariance: a tutorial

  • Malte Henkel
Review
Part of the following topical collections:
  1. Recent Advances in Phase Transitions and Critical Phenomena

Abstract

Dynamical scaling arises naturally in various many-body systems far from equilibrium. After a short historical overview, the elements of possible extensions of dynamical scaling to a local scale-invariance will be introduced. Schrödinger-invariance, the most simple example of local scale-invariance, will be introduced as a dynamical symmetry in the Edwards-Wilkinson universality class of interface growth. The Lie algebra construction, its representations and the Bargman superselection rules will be combined with non-equilibrium Janssen-de Dominicis field-theory to produce explicit predictions for responses and correlators, which can be compared to the results of explicit model studies. At the next level, the study of non-stationary states requires to go over, from Schrödinger-invariance, to ageing-invariance. The ageing algebra admits new representations, which acts as dynamical symmetries on more general equations, and imply that each non-equilibrium scaling operator is characterised by two distinct, independent scaling dimensions. Tests of ageing-invariance are described, in the Glauber-Ising and spherical models of a phase-ordering ferromagnet and the Arcetri model of interface growth.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Weyl, Symmetry (Princeton University Press, Princeton NJ, 1952)Google Scholar
  2. 2.
    H. Weyl, Symmetrie (Birkhäuser, Basel, 1955)Google Scholar
  3. 3.
    A. Einstein, Ann. Physik 17, 891 (1905)ADSCrossRefGoogle Scholar
  4. 4.
    E. Cunningham, Proc. London Math. Soc. 8, 77 (1909)Google Scholar
  5. 5.
    H. Bateman, Proc. London Math. Soc. 8, 223 (1910)CrossRefGoogle Scholar
  6. 6.
    S. El-Showk, Yu. Nakayama, S. Rychkov, Nucl. Phys. B 848, 578 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    R. Jackiw, S.-Y. Pi, J. Phys. A 44, 223001 (2011)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    E.C.G. Stueckelberg, A. Petermann, Helv. Phys. Acta 26, 499 (1952)Google Scholar
  9. 9.
    B. Widom, J. Chem. Phys. 43, 3898 (1965)ADSCrossRefGoogle Scholar
  10. 10.
    L. Kadanoff, Physics 2, 263 (1966)Google Scholar
  11. 11.
    K.G. Wilson, Phys. Rev. B 4, 3174 (1971)ADSCrossRefGoogle Scholar
  12. 12.
    C. Domb, The Critical Point: A Historical Introduction to the Modern Theory of Critical Phenomena (Taylor & Francis, London, 1996)Google Scholar
  13. 13.
    M.E. Fisher, Rev. Mod. Phys. 70, 653 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    B. Berche, M. Henkel, R. Kenna, Rev. Bras. Ens. Fís. 31, 2602 (2009)Google Scholar
  15. 15.
    B. Berche, M. Henkel, R. Kenna, J. Phys. Stud. 13, 3201 (2009)Google Scholar
  16. 16.
    A.M. Polyakov, Sov. Phys. JETP Lett. 12, 381 (1970)ADSGoogle Scholar
  17. 17.
    A.A. Belavin, A.M. Polyakov, A.B. Zamolodchikov, Nucl. Phys. B 241, 333 (1984)ADSCrossRefGoogle Scholar
  18. 18.
    B. Delamotte, N. Tissier, N. Wschebor, Phys. Rev. E 93, 012144 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    J. Polchinsky, String Theory (Cambridge University Press, Cambridge, 1998), Vol 2 Google Scholar
  20. 20.
    B. Zwiebach, A First Course in String Theory (Cambridge University Press, Cambridge, 2005)Google Scholar
  21. 21.
    A. Einstein, Ann. Physik 17, 549 (1905)ADSCrossRefGoogle Scholar
  22. 22.
    P. Langevin, C.R. Acad. Sci. (Paris) 146, 530 (1908)Google Scholar
  23. 23.
    S. Lie, Arch. Math. Vid. (Kristiania) 6, 328 (1882)Google Scholar
  24. 24.
    S. Lie, Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen (Teubner, Leipzig, 1891)Google Scholar
  25. 25.
    C.G. Jacobi, Vorlesungen über Dynamik, 4. Vorlesung (Königsberg 1842/43), in A. Clebsch, A. Lottner (Eds.), Gesammelte Werke von C.G. Jacobi (Akademie der Wissenschaften, Berlin 1866/1884)Google Scholar
  26. 26.
    U. Niederer, Helv. Phys. Acta 45, 802 (1972)MathSciNetGoogle Scholar
  27. 27.
    C.R. Hagen, Phys. Rev. D 5, 377 (1972)ADSCrossRefGoogle Scholar
  28. 28.
    G. Burdet, M. Perrin, Lett. Nuov. Cim. 4, 651 (1972)CrossRefGoogle Scholar
  29. 29.
    R. Jackiw, Phys. Today 25, 23 (1972)ADSCrossRefGoogle Scholar
  30. 30.
    A.J. Bray, Adv. Phys. 43, 357 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    A.-L. Barabási, H.E. Stanley, Fractals Concepts Insurface Growth (Cambridge University Press, Cambridge, 1995)Google Scholar
  32. 32.
    T. Halpin-Healy, Y.-C. Zhang, Phys. Rep. 254, 215 (1995)ADSCrossRefGoogle Scholar
  33. 33.
    J. Krug, Adv. Phys. 46, 139 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    L.F. Cugliandolo, in J.-L. Barrat et al. (Eds.), Slow Relaxation and Non-Equilibrium Dynamics in Condensed Matter (Springer, Heidelberg, 2002)Google Scholar
  35. 35.
    M. Henkel, M. Pleimling, Non-Equilibrium Phase Transitions, Vol. 2: Ageing and Dynamical Scaling Far From Equilibrium (Springer, Heidelberg, 2010)Google Scholar
  36. 36.
    U.C. Täuber, Critical dynamics (Cambridge University Press, Cambridge, 2014)Google Scholar
  37. 37.
    L.C.E. Struik, Physical Ageing in Amorphous Polymers and Other Materials (Elsevier, Amsterdam, 1978)Google Scholar
  38. 38.
    S.F. Edwards, D.R. Wilkinson, Proc. Roy. Soc. A 381, 17 (1982)ADSCrossRefGoogle Scholar
  39. 39.
    F. Family, T. Vicsek, J. Phys. A 18, L75 (1985)ADSCrossRefGoogle Scholar
  40. 40.
    T. Enss, M. Henkel, A. Picone, U. Schollwöck, J. Phys. A 37, 10479 (2004)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    F. Baumann, A. Gambassi, J. Stat. Mech. P01002 (2007)Google Scholar
  42. 42.
    V.S. L'vov, V.V. Lebedev, M. Paton, I. Procaccia, Nonlinearity 6, 25 (1993)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    E. Frey, U.C. Täuber, T. Hwa, Phys. Rev. E 53, 4424 (1996)ADSCrossRefGoogle Scholar
  44. 44.
    M. Henkel, M. Paeßens, M. Pleimling, Europhys. Lett. 62, 644 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    M. Henkel, M. Paeßens, M. Pleimling, Phys. Rev. E 69, 056109 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    M. Henkel, J.D. Noh, M. Pleimling, Phys. Rev. E 85, 030102(R) (2012)ADSCrossRefGoogle Scholar
  47. 47.
    V. Bargman, Ann. Math. 56, 1 (1954)CrossRefGoogle Scholar
  48. 48.
    A. Picone, M. Henkel, Nucl. Phys. B 688, 217 (2004)ADSCrossRefGoogle Scholar
  49. 49.
    M. Henkel, in H.J. Herrmann, W.J. Janke, F. Karsch (Eds.), textitDynamics of First-Order Transitions (World Scientific, Singapour, 1992), p. 239Google Scholar
  50. 50.
    M. Henkel, Int. J. Mod. Phys. C 3, 1011 (1992)ADSCrossRefGoogle Scholar
  51. 51.
    M. Henkel, J. Stat. Phys. 75, 1023 (1994)ADSCrossRefGoogle Scholar
  52. 52.
    M. Henkel, J. Unterberger, Nucl. Phys. B 660, 407 (2003)ADSCrossRefGoogle Scholar
  53. 53.
    J. Unterberger, C. Roger, The Schrödinger-Virasoro Algebra (Springer, Heidelberg, 2012)Google Scholar
  54. 54.
    C. Roger, J. Unterberger, Ann. Henri Poincaré 7, 1477 (2006)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    A. Röthlein, F. Baumann, M. Pleimling, Phys. Rev. E 74, 061604 (2006)ADSCrossRefGoogle Scholar
  56. 56.
    A. Röthlein, F. Baumann, M. Pleimling, Phys. Rev. E 76, 019901 (2007)ADSCrossRefGoogle Scholar
  57. 57.
    S. Bustingorry, L.F. Cugliandolo, J.L. Iguain, J. Stat. Mech. P09008 (2007)Google Scholar
  58. 58.
    M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965)Google Scholar
  59. 59.
    F. Family, J. Phys. A 19, L441 (1986)ADSCrossRefGoogle Scholar
  60. 60.
    D.D. Vvedensky, Phys. Rev. E 67, 025102(R) (2003)ADSCrossRefGoogle Scholar
  61. 61.
    H.K. Janssen, B. Schaub, B. Schmittmann, Z. Phys. B 73, 539 (1989)ADSCrossRefGoogle Scholar
  62. 62.
    T.J. Newman, A.J. Bray, J. Phys. A 23, 4491 (1990)ADSCrossRefGoogle Scholar
  63. 63.
    M. Henkel, T. Enss, M. Pleimling, J. Phys. A 39, L589 (2006)ADSCrossRefGoogle Scholar
  64. 64.
    U. Niederer, Helv. Phys. Acta 47, 167 (1974)MathSciNetGoogle Scholar
  65. 65.
    S. Stoimenov, M. Henkel, J. Phys. A 46, 245004 (2013)ADSMathSciNetCrossRefGoogle Scholar
  66. 66.
    S. Stoimenov, M. Henkel, Nucl. Phys. B 847, 612 (2011)ADSCrossRefGoogle Scholar
  67. 67.
    M.H. Jacobs, Diffusion Processes (Springer, Heidelberg, 1967)Google Scholar
  68. 68.
    P.C. Bressloff, J.M. Newby, Rev. Mod. Phys. 85, 135 (2013)ADSCrossRefGoogle Scholar
  69. 69.
    J.M. Romero, A. Gaona, J. Phys. Conf. Ser. 512, 012028 (2014)CrossRefGoogle Scholar
  70. 70.
    J.M. Romero, O. González-Gaxiola, G. Chacón-Acosta, Int. J. Pure Appl. Math. 82, 41 (2013)Google Scholar
  71. 71.
    D. Minic, D. Vaman, C. Wu, Phys. Rev. Lett. 109, 131601 (2012)ADSCrossRefGoogle Scholar
  72. 72.
    M. Henkel, Symmetry 7, 2108 (2015)MathSciNetCrossRefGoogle Scholar
  73. 73.
    T.H. Berlin, M. Kac, Phys. Rev. 86, 821 (1952)ADSCrossRefGoogle Scholar
  74. 74.
    H.W. Lewis, G.H. Wannier, Phys. Rev. 88, 682 (1952)ADSCrossRefGoogle Scholar
  75. 75.
    H.W. Lewis, G.H. Wannier, Phys. Rev. 90, 1131 (1953)ADSCrossRefGoogle Scholar
  76. 76.
    G. Ronca, J. Chem. Phys. 68, 3737 (1978)ADSCrossRefGoogle Scholar
  77. 77.
    C. Godrèche, J.-M. Luck, J. Phys. A 33, 9141 (2000)ADSMathSciNetCrossRefGoogle Scholar
  78. 78.
    M. Henkel, X. Durang, J. Stat. Mech. P05022 (2015)Google Scholar
  79. 79.
    J.M. Kim, J.M. Kosterlitz, Phys. Rev. Lett. 62, 2289 (1989)ADSCrossRefGoogle Scholar
  80. 80.
    P. Calabrese, A. Gambassi, J. Phys. A 38, R133 (2005)ADSCrossRefGoogle Scholar
  81. 81.
    R.J. Glauber, J. Math. Phys. 4, 294 (1963)ADSMathSciNetCrossRefGoogle Scholar
  82. 82.
    C. Godrèche, J.-M. Luck, J. Phys. A 33, 1151 (2000)ADSMathSciNetCrossRefGoogle Scholar
  83. 83.
    G.F. Mazenko, Phys. Rev. E 69, 016114 (2004)ADSCrossRefGoogle Scholar
  84. 84.
    M. Henkel, M. Pleimling, Phys. Rev. E 68, 065101(R) (2003)ADSCrossRefGoogle Scholar
  85. 85.
    M. Henkel, A. Picone, M. Pleimling, Europhys. Lett. 68, 191 (2004)ADSCrossRefGoogle Scholar
  86. 86.
    E. Lorenz, W. Janke, Europhys. Lett. 77, 10003 (2007)ADSCrossRefGoogle Scholar
  87. 87.
    D.S. Fisher, D.A. Huse, Phys. Rev. B 38, 373 (1988)ADSCrossRefGoogle Scholar
  88. 88.
    S. Mujumder, W. Janke, Phys. Rev. E 93, 032306 (2016)ADSGoogle Scholar
  89. 89.
    S. Mujumder, W. Janke, in D. Landau et al. (Eds.) Computer Simulation Studies in Condensed-Matter Physics XXVIII, J. Phys. Conf. Series 750, 012020 (2016)Google Scholar
  90. 90.
    M. Pleimling, A. Gambassi, Phys. Rev. B 71, 180401(R) (2005)ADSCrossRefGoogle Scholar
  91. 91.
    M. Kardar, G. Parisi, Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986)ADSCrossRefGoogle Scholar
  92. 92.
    M. Henkel, Nucl. Phys. B 869, 282 (2013)ADSCrossRefGoogle Scholar
  93. 93.
    J. Kelling, G. Ódor, S. Gemming, Phys. Rev. E 94, 022107 (2016)ADSCrossRefGoogle Scholar
  94. 94.
    J. Kelling, G. Ódor, S. Gemming, to be published in J. Phys. A [arXiv: 1609.05795]
  95. 95.
    F. Sastre, private communication (2016)Google Scholar
  96. 96.
    G. Ódor, J. Kelling, S. Gemming, Phys. Rev. E 89, 032146 (2014)ADSCrossRefGoogle Scholar
  97. 97.
    T. Halpin-Healy, G. Palansantzas, Europhys. Lett. 105, 50001 (2014)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Rechnergestützte Physik der Werkstoffe, Institut für Baustoffe (IfB), ETH ZürichZürichSwitzerland

Personalised recommendations