Advertisement

The European Physical Journal Special Topics

, Volume 226, Issue 4, pp 805–816 | Cite as

Infinite disorder and correlation fixed point in the Ising model with correlated disorder

Regular Article
Part of the following topical collections:
  1. Recent Advances in Phase Transitions and Critical Phenomena

Abstract

Recent Monte Carlo simulations of the q-state Potts model with a disorder displaying slowly-decaying correlations reported a violation of hyperscaling relation caused by large disorder fluctuations and the existence of a Griffiths phase, as in random systems governed by an infinite-disorder fixed point. New simulations of the Ising model (q = 2), directly made in the limit of an infinite disorder strength, are presented. The magnetic scaling dimension is shown to correspond to the correlated percolation fixed point. The latter is shown to be unstable at finite disorder strength but with a large cross-over length which is not accessible to Monte Carlo simulations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Imry, M. Wortis, Phys. Rev. B 19, 3581 (1979)ADSCrossRefGoogle Scholar
  2. 2.
    K. Hui, A.N. Berker, Phys. Rev. Lett. 62, 2507 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    M. Aizenman, J. Wehr, Phys. Rev. Lett. 62, 2503 (1989)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    A.B. Harris, J. Phys. C: Solid State Phys. 7, 1671 (1974)ADSCrossRefGoogle Scholar
  5. 5.
    J.L. Cardy, J.L. Jacobsen, Phys. Rev. Lett. 79, 4063 (1997)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    J.L. Jacobsen, J.L. Cardy, Nucl. Phys. B 515, 701 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    C. Chatelain, B. Berche, Nucl. Phys. B 572, 626 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    A.W.W. Ludwig, Nucl. Phys. B 285, 97 (1987)ADSCrossRefGoogle Scholar
  9. 9.
    A.W.W. Ludwig, J.L. Cardy, Nucl. Phys. B 285, 687 (1987)ADSCrossRefGoogle Scholar
  10. 10.
    Vl.S. Dotsenko, M. Picco, P. Pujol, Phys. Lett. B 347, 113 (1995)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Vl.S. Dotsenko, M. Picco, P. Pujol, Nucl. Phys. B 455, 701 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    L. Schwenger, K. Budde, C. Voges, H. Pfnür, Phys. Rev. Lett. 73, 296 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    A. Weinrib, B.I. Halperin, Phys. Rev. B 27, 413 (1983)ADSCrossRefGoogle Scholar
  14. 14.
    H.G. Ballesteros, G. Parisi, Phys. Rev. B 60, 12912 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    D. Ivaneyko, B. Berche, Y. Holovatch, J. Ilnytskyi, Physica A 387, 4497 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    M. Dudka, A.A. Fedorenko, V. Blavatska, Y. Holovatch, Phys. Rev. B 93, 224422 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    C. Chatelain, Europhys. Lett. 102, 66007 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    C. Chatelain, Phys. Rev. E 89, 032105 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    R.B. Griffiths, Phys. Rev. Lett. 23, 17 (1969)ADSCrossRefGoogle Scholar
  20. 20.
    T. Vojta, J. Phys. A 39, R143 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    B.M. McCoy, T.T. Wu, Phys. Rev. 176, 631 (1968)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    B.M. McCoy, T.T. Wu, Phys. Rev. 188, 982 (1969)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    D.S. Fisher, Phys. Rev. B 51, 6411 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    M. Schwartz, A. Soffer, Phys. Rev. Lett. 55, 2499 (1985)ADSCrossRefGoogle Scholar
  25. 25.
    T. Senthil, S.N. Majumdar, Phys. Rev. Lett. 76, 3001 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    R.B. Potts, Math. Proc. Camb. Phil. Soc. 48, 106 (1952)ADSCrossRefGoogle Scholar
  27. 27.
    J. Ashkin, E. Teller, Phys. Rev. 64, 178 (1943)ADSCrossRefGoogle Scholar
  28. 28.
    C. Fan, Phys. Lett. A 39, 136 (1972)ADSCrossRefGoogle Scholar
  29. 29.
    A. Coniglio, A. Fierro, Encyclopedia of Complexity and Systems Science, Part 3, 1596 (Springer, New York, 2009)Google Scholar
  30. 30.
    W. Janke, A. Schakel, Braz. J. Phys. 36, 708 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    R. Tarjan, Inf. Proces. Lett. 2, 160 (1974)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Groupe de Physique Statistique, Département P2M, Institut Jean Lamour (CNRS UMR 7198), Université de LorraineLorraineFrance

Personalised recommendations