Advertisement

The European Physical Journal Special Topics

, Volume 226, Issue 7, pp 1515–1523 | Cite as

Photon Hall scattering from alkaline-earth-like atoms and alkali-like ions

  • B.A. van Tiggelen
  • D. Wilkowski
Open Access
Regular Article
  • 68 Downloads
Part of the following topical collections:
  1. From Ill-condensed Matter to Mesoscopic Wave Propagation

Abstract

We investigate the possibility of observing a magneto-transverse scattering of photons from alkaline-earth-like atoms as well as alkali-like ions and provide orders of magnitude. The transverse magneto-scattering is physically induced by the interference between two possible quantum transitions of an outer electron in a S state, one dispersive electric-dipole transition to a P orbital state and a second resonant electric-quadrupole transition to a D orbital state. In contrast with previous mechanisms proposed for such an atomic photonic Hall effect, no real photons are scattered by the electric-dipole allowed transition, which increases the ratio of Hall current to background photons significantly. The main experimental challenge is to overcome the small detection threshold, with only 10−5 photons scattered per atom per second.

References

  1. 1.
    E. Charney, The Molecular Basis of Optical Activity (Wiley, New York, 1979)Google Scholar
  2. 2.
    G. Rikken, B. Van Tiggelen, Nature 381, 54 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    D. Lacoste, B. Van Tiggelen, G. Rikken, A. Sparenberg, JOSA A 15, 1636 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    G. Rikken, A. Sparenberg, B. Van Tiggelen, Physica B: Condensed Matter. 246, 188 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    B. Grémaud, D. Delande, O. Sigwarth, C. Miniatura, Phys. Rev. Lett. 102, 217401 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    B. van Tiggelen, A. Nussle, G. Rikken, Phys. Rev. A 87, 063424 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    E.A. Chan, S.A. Aljunid, N.I. Zheludev, D. Wilkowski, M. Ducloy, Opt. Lett. 41, 2005 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    J.J. Mc Clelland, J.L. Hanssen, Phys. Rev. Lett. 96, 143005 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    M. Lu, S.H. Youn, B.L. Lev, Phys. Rev. Lett. 104, 063001 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    D. Sukachev, A. Sokolov, K. Chebakov, A. Akimov, S. Kanorsky, N. Kolachevsky, V. Sorokin, Phys. Rev. A 82, 011405 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    K.-A. Brickman, M.-S. Chang, M. Acton, A. Chew, D. Matsukevich, P.C. Haljan, V.S. Bagnato, C. Monroe, Phys. Rev. A 76, 043411 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    H. Hachisu, K. Miyagishi, S. Porsev, A. Derevianko, V. Ovsiannikov, V. PalChikov, M. Takamoto, H. Katori, Phys. Rev. Lett. 100, 053001 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    R.J. Hendricks, J.L. Sørensen, C. Champenois, M. Knoop, M. Drewsen, Phys. Rev. A 77, 021401 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    C.W. BauschlicherJr., S.R. Langhoff, H. Partridge, J. Phys. B: At. Mol. Phys. 18, 1523 (1985)ADSCrossRefGoogle Scholar
  15. 15.
    P. Taylor, M. Roberts, S.V. Gateva-Kostova, R.B.M. Clarke, G.P. Barwood, W.R.C. Rowley, P. Gill, Phys. Rev. A 56, 2699 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    R. Loudon, The Quantum Theory of Light (OUP, Oxford, 2000)Google Scholar
  17. 17.
    T. Yang, K. Pandey, M.S. Pramod, F. Leroux, C.C. Kwong, E. Hajiyev, Z.Y. Chia, B. Fang, D. Wilkowski, Euro. Phys. J. D 69, 1 (2015)CrossRefGoogle Scholar
  18. 18.
    N. Rivera, I. Kaminer, B. Zhen, J.D. Joannopoulos, M. Soljačić, Science 353, 263 (2016)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Université Grenoble-Alpes, Laboratoire de Physique et de Modélisation des Milieux CondensésGrenobleFrance
  2. 2.CNRS, Laboratoire de Physique et de Modélisation des Milieux CondensésGrenobleFrance
  3. 3.MajuLab, CNRS-Université de Nice-NUS-NTU, International Joint Research Unit UMI 3654SingaporeSingapore
  4. 4.Centre for Quantum Technologies, National University of SingaporeSingaporeSingapore
  5. 5.School of Physical and Mathematical Sciences, Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations