The European Physical Journal Special Topics

, Volume 226, Issue 15, pp 3227–3237 | Cite as

Phase oscillator model for noisy oscillators

Regular Article
Part of the following topical collections:
  1. Challenges in the Analysis of Complex Systems: Prediction, Causality and Communication

Abstract

The Kuramoto model has become a paradigm to describe the dynamics of nonlinear oscillator under the influence of external perturbations, both deterministic and stochastic. It is based on the idea to describe the oscillator dynamics by a scalar differential equation, that defines the time evolution for the phase of the oscillator. Starting from a phase and amplitude description of noisy oscillators, we discuss the reduction to a phase oscillator model, analogous to the Kuramoto model. The model derived shows that the phase noise problem is a drift-diffusion process. Even in the case where the expected amplitude remains unchanged, the unavoidable amplitude fluctuations do change the expected frequency, and the frequency shift depends on the amplitude variance. We discuss different degrees of approximation, yielding increasingly accurate phase reduced descriptions of noisy oscillators.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Lax, Phys. Rev. 160, 290 (1967) ADSCrossRefGoogle Scholar
  2. 2.
    F.X. Kärtner, Int. J. Circ. Theor. Appl. 18, 485 (1990) CrossRefGoogle Scholar
  3. 3.
    A. Demir, A. Mehrotra, J. Roychowdhury, IEEE Trans. Circ. Syst. I: Fundam. Theor. Appl. 57, 655 (2000) CrossRefGoogle Scholar
  4. 4.
    M. Bonnin, F. Corinto, IEEE Trans. Circ. Syst. I: Regul. Pap. 60, 2104 (2013) Google Scholar
  5. 5.
    P. Maffezzoni, D. D’Amore, Int. J. Circ. Theor. Appl. 40, 999 (2012) CrossRefGoogle Scholar
  6. 6.
    Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer-Verlag, Berlin, 2003) Google Scholar
  7. 7.
    J.A. Acebròn, L.L. Bonilla, C.J.P. Vicente, F. Ritort, R. Spigler, Rev. Mod. Phys. 77, 137 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    X. Lai, J. Roychowdhury, IEEE Trans. Microw. Theor. Technol. 52, 2251 (2004) ADSCrossRefGoogle Scholar
  9. 9.
    P. Maffezzoni, IEEE Trans. Circ. Syst. I: Regul. Pap. 55, 1297 (2008) MathSciNetGoogle Scholar
  10. 10.
    T. Nagashima, X. Wei, H. Tanaka, H. Sekiya, IEEE Trans. Circ. Syst. I: Regul. Pap. 61, 2904 (2014) Google Scholar
  11. 11.
    F.C. Hoppensteadt, E.M. Izhikevich, IEEE Trans. Circ. Syst. I: Fundam. Theor. Appl. 48, 133 (2001) CrossRefGoogle Scholar
  12. 12.
    M. Bonnin, F. Corinto, M. Gilli, IEEE Trans. Circ. Syst. I: Regul. Pap. 55, 1671 (2008) Google Scholar
  13. 13.
    P. Maffezzoni, IEEE Trans. Circ. Syst. I: Regul. Pap. 57, 654 (2010) MathSciNetGoogle Scholar
  14. 14.
    T. Djurhuus, V. Krozer, J. Vidkjær, T.K. Johansen, IEEE Trans. Circ. Syst. I: Regul. Pap. 56, 1373 (2009) Google Scholar
  15. 15.
    E.M. Izhikevich, Dynamical systems in neuroscience (MIT Press, Cambridge, 2007) Google Scholar
  16. 16.
    A. Guillamon, G. Huguet, SIAM J. Appl. Dyn. Syst. 8, 1005 (2009) Google Scholar
  17. 17.
    H. Ahmed, R. Ushirobira, D. Efimov, J. Theor. Biol. 387, 206 (2015) CrossRefGoogle Scholar
  18. 18.
    K. Yoshimura, K. Arai, Phys. Rev. Lett. 101, 154101 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    M. Bonnin, F. Corinto, IEEE Trans. Circ. Syst. II: Express Briefs 61, 158 (2014) Google Scholar
  20. 20.
    M. Bonnin, F.L. Traversa, F. Bonani, IEEE Trans. Circ. Syst. II: Express Briefs 63, 698 (2016) Google Scholar
  21. 21.
    M. Bonnin, Int. J. Circ. Theor. Appl. 45, 636 (2017) CrossRefGoogle Scholar
  22. 22.
    B. Øksendal, Stochastic Differential Equations (Springer, New York, 2003) Google Scholar
  23. 23.
    J. Guckenheimer, J. Math. Biol. 1, 259 (1975) CrossRefGoogle Scholar
  24. 24.
    A. Kimiaeifar, A.R. Saidi, G.H. Bagheri, M. Rahimpour, D.G. Domairry, Chaos Solitons Fractals 42, 2660 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    M. Bonnin, F. Corinto, M. Gilli, IEEE Trans. Circ. Syst. II 59, 638 (2012) Google Scholar
  26. 26.
    C.W. Gardiner, Handbook of Stochastic Methods (Springer, Berlin, 1985) Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Electronics and TelecommunicationsPolitecnico di TorinoTurinItaly

Personalised recommendations