The European Physical Journal Special Topics

, Volume 226, Issue 3, pp 401–416 | Cite as

The new challenges of multiplex networks: Measures and models

  • Federico Battiston
  • Vincenzo Nicosia
  • Vito Latora
Open Access
Regular Article
Part of the following topical collections:
  1. Nonlinearity, Nonequilibrium and Complexity: Questions and Perspectives in Statistical Physics


What do societies, the Internet, and the human brain have in common? They are all examples of complex relational systems, whose emerging behaviours are largely determined by the non-trivial networks of interactions among their constituents, namely individuals, computers, or neurons, rather than only by the properties of the units themselves. In the last two decades, network scientists have proposed models of increasing complexity to better understand real-world systems. Only recently we have realised that multiplexity, i.e. the coexistence of several types of interactions among the constituents of a complex system, is responsible for substantial qualitative and quantitative differences in the type and variety of behaviours that a complex system can exhibit. As a consequence, multilayer and multiplex networks have become a hot topic in complexity science. Here we provide an overview of some of the measures proposed so far to characterise the structure of multiplex networks, and a selection of models aiming at reproducing those structural properties and quantifying their statistical significance. Focusing on a subset of relevant topics, this brief review is a quite comprehensive introduction to the most basic tools for the analysis of multiplex networks observed in the real-world. The wide applicability of multiplex networks as a framework to model complex systems in different fields, from biology to social sciences, and the colloquial tone of the paper will make it an interesting read for researchers working on both theoretical and experimental analysis of networked systems.


  1. 1.
    R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    M.E.J. Newman, SIAM Review 45, 167 (2003)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Phys. Rep. 424, 175 (2006)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    M.E.J. Newman, Networks: an Introduction (Oxford University Press, Oxford, UK, 2010)Google Scholar
  5. 5.
    S. Strogatz, Nature 410, 268 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469, 93 (2008)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    E. Bullmore, O. Sporns, Nat. Rev. Neurosci. 10, 186 (2009)CrossRefGoogle Scholar
  8. 8.
    C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    M. Barthélemy, Phys. Rep. 499, 1 (2011)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    F. De Vico Fallani, J. Richiardi, M. Chavez, S. Achard, Philos. Trans. R. Soc. London B: Biol. Sci. 369 (2014)Google Scholar
  11. 11.
    S. Boccaletti, G. Bianconi, R. Criado, C.I. Del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, M. Zanin, Phys. Rep. 544, 1 (2014)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    M Kivela, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, J. Comp. Networks 2, 203 (2014)CrossRefGoogle Scholar
  13. 13.
    K.-M. Lee, B. Mina, K.-I. Goh, Eur. Phys. J. B 88, 48 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    F. Battiston, V. Nicosia, V. Latora, Phys. Rev. E 89, 032804 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    G. Menichetti, D. Remondini, P. Panzarasa, R.J. Mondragón, G. Bianconi, PLoS ONE 9, e97857 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivela, Y. Moreno, M.A. Porter, S. Gómez, A. Arenas, Phys. Rev. X 3, 041022 (2013)Google Scholar
  17. 17.
    S. Gómez, A. Diaz-Guilera, J. Gomez-Gardeñes, C.J. Perez-Vicente, Y. Moreno, A. Arenas, Phys. Rev. Lett. 110, 028701 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    F. Radicchi, A. Arenas, Nat. Phys. 9, 717 (2013)CrossRefGoogle Scholar
  19. 19.
    V. Nicosia, V. Latora, Phys. Rev. E 92, 032805 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    D. Cellai, G. Bianconi, Phys. Rev. E 93, 032302 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    E. Cozzo, M. Kivela, M. De Domenico, A. Solé-Ribalta, A. Arenas, S. Gómez, M.A. Porter, Y. Moreno, New J. Phys. 17, 073029 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    L. Solá, M. Romance, R. Criado, J. Flores, A. Garcia del Amo, S. Boccaletti, Chaos: An Interdiscip. J. Nonlinear Sci. 23, 033131 (2013)CrossRefGoogle Scholar
  23. 23.
    F. Battiston, V. Nicosia, V. Latora, New J. Phys. 18, 043035 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    A. Solé-Ribalta, M. De Domenico, S. Gómez and A. Arenas, Physica D 323, 73 (2016)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Halu, R.J. Mondragón, P. Panzarasa, G. Bianconi, PLoS ONE, 8, e78293 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    M.G. Morris, M. Barthelemy, Phys. Rev. Lett. 109, 128703 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    V. Nicosia, G. Bianconi, V. Latora, M. Barthelemy, Phys. Rev. Lett. 111, 058701 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    A. Aleta, S. Meloni, Y. Moreno, arXiv:1607.00072 (2016)
  29. 29.
    M. De Domenico, A. Solé-Ribalta, E. Omodei, S. Gómez, A. Arenas, Nat. Commun. 6, 6868 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    A. Solé-Ribalta, M. De Domenico, S. Gómez, A. Arenas, Proceedings of the 2014 ACM conference on Web Science (2014), pp. 149–155Google Scholar
  31. 31.
    R. Pastor-Satorras, A. Vazquez, A. Vespignani, Phys. Rev. Lett. 87, 258701 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    L. Lacasa, V. Nicosia, V. Latora, Sci. Rep. 5, 15508 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    G. Ferraz de Arruda, E. Cozzo, Y. Moreno, F.A. Rodrigues, Physica D 323, 5 (2016)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    A. Solé-Ribalta, M. De Domenico, N.E. Kouvaris, A. Diaz-Guilera, S. Gómez, A. Arenas, Phys. Rev. E 88, 032807 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    R.J. Sánchez-García, E. Cozzo, Y. Moreno, Phys. Rev. E 89, 052815 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    M. De Domenico, V. Nicosia, A. Arenas, V. Latora, Nat. Commun. 6, 6864 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    K.-K. Kleineberg, M. Boguña, M. Angeles Serrano, F. Papadopoulos, Nat. Phys. 12, 1076 (2016)CrossRefGoogle Scholar
  38. 38.
    G. Bianconi, Phys. Rev. E 87, 062806 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    V. Gemmetto, D. Garlaschelli, Sci. Rep. 5, 9120 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Science 298, 824 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Sheffer, U. Alon, Science 303, 1538 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    M. Kivela, M.A. Porter, arXiv:1506.00508 (2015)
  43. 43.
    F. Battiston, V. Nicosia, M. Chavez, V. Latora, arXiv:1606.09115, in press in Chaos: An Interdisciplinary Journal of Nonlinear Science (2017)
  44. 44.
    P.J. Mucha, T. Richardson, K. Macon, M.A. Porter, J.P. Onnela, Science 328, 876 (2010)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    M. De Domenico, A. Lancichinetti, A. Arenas, M. Rosvall, Phys. Rev. X 5, 011027 (2015)Google Scholar
  46. 46.
    F. Battiston, J. Iacovacci, V. Nicosia, G. Bianconi, V. Latora, PLOS ONE 11, e0147451 (2016)CrossRefGoogle Scholar
  47. 47.
    J. Iacovacci, Z. Wu, G. Bianconi, Phys. Rev. E 92, 042806 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    M. Rosvall, C.T. Bergstrom, Proc. Natl. Acad. Sci. U.S.A. 105, 1118 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    A. Halu, S. Mukherjee, G. Bianconi, Phys. Rev. E 89, 012806 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    O. Sagarra, C.J. Perez Vicente, A. Diaz-Guilera, Phys. Rev. E 92, 052816 (2015)ADSCrossRefGoogle Scholar
  51. 51.
    M. Diakonova, V. Nicosia, V. Latora, M. San Miguel, New J. Phys. 18, 023010 (2016)ADSCrossRefGoogle Scholar
  52. 52.
    J.Y. Kim, K.-I. Goh, Phys. Rev. Lett. 111, 058702 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    N. Momeni, B. Fotouhi, Phys. Rev. E 92, 062812 (2015)ADSCrossRefGoogle Scholar
  54. 54.
    V. Nicosia, G. Bianconi, V. Latora, M. Barthelemy, Phys. Rev. E 90, 042807 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    Y. Murase, J. Török, H.-H. Jo, K. Kaski, J. Kertész, Phys. Rev. E 90, 052810 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    T.P. Peixoto, Phys. Rev. E 92, 042807 (2015)ADSCrossRefGoogle Scholar
  57. 57.
    T. Valles-Catala, F.A. Massucci, R. Guimera, M. Sales-Pardo, Phys. Rev. X 6, 011036 (2016)Google Scholar

Copyright information

© The Author(s) 2017

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Federico Battiston
    • 1
  • Vincenzo Nicosia
    • 1
  • Vito Latora
    • 1
    • 2
  1. 1.School of Mathematical Sciences, Queen Mary University of LondonLondon E1 4NSUK
  2. 2.Dipartimento di Fisica ed Astronomia, Università di Catania and INFNCataniaItaly

Personalised recommendations