The European Physical Journal Special Topics

, Volume 226, Issue 7, pp 1409–1421 | Cite as

Coherent multiple light scattering in Faraday active materials

Open Access
Regular Article
  • 87 Downloads
Part of the following topical collections:
  1. From Ill-condensed Matter to Mesoscopic Wave Propagation

Abstract

Wave propagation in multiple scattering media shows various kinds of coherent phenomena such as coherent backscattering [1, 2] or Anderson localization [3], both of which are intimately connected to the concept of reciprocity. Manipulating reciprocity in such media is a powerful tool to study these phenomena in experiments [4]. Here we discuss the manipulation of reciprocity in reflection and transmission geometry for the case of light propagation in magneto-optical media. We show new experiments on coherent backscattering and speckle correlations in strongly scattering samples containing Faraday active materials (CeF3) with transport mean free path in the μm range, at low temperatures (T < 10 K) and high fields (B = 18 T). Under such conditions we observe the effect of a Faraday rotation saturation in multiple scattering measurements.

References

  1. 1.
    M.P. Van Albada, Ad Lagendijk, Observation of weak localization of light in a random medium, Phys. Rev. Lett. 55, 2692 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    P.-E. Wolf, G. Maret, Weak localization and coherent backscattering of photons in disordered media, Phys. Rev. Lett. 55, 2696 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    P.W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109, 1492 (1958)ADSCrossRefGoogle Scholar
  4. 4.
    F.A. Erbacher, R. Lenke, G. Maret, Multiple light scattering in magneto-optically active media, Europhys. Lett. 21, 551 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    M. Fink, Time reversal in acoustics, Contemp. Phys. 37, 95 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    G. Bayer, T. Niederdränk, Weak localization of acoustic waves in strongly scattering media, Phys. Rev. Lett. 70, 3884 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    F. Jendrzejewski, K. Müller, J. Richard, A. Date, T. Plisson, P. Bouyer, A. Aspect, V. Josse, Coherent backscattering of ultracold atoms, Phys. Rev. Lett. 109, 195302 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    G. Modugno, Anderson localization in Bose–Einstein condensates, Rep. Prog. Phys. 73, 102401 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    E. Akkermans, G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University Press, 2007)Google Scholar
  10. 10.
    D. Vollhardt, P. Wölfle, Self-consistent theory of Anderson localization, in Electronic Phase Transitions, edited by W. Hanke and Yu.V. Kopaev, Vol. 32 of Modern Problems in Condensed Matter Sciences (Elsevier, Amsterdam, 1992), Chap. 1, pp. 1–78Google Scholar
  11. 11.
    R. Lenke, G. Maret, Affecting weak light localization by strong magnetic fields, Phys. Scrip. 1993, 605 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    T. Sperling, L. Schertel, M. Ackermann, G.J. Aubry, C.M. Aegerter, G. Maret, Can 3D light localization be reached in ‘hite paint’? New J. Phys. 18, 013039 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    S.E. Skipetrov, J.H. Page, Red light for anderson localization, New J. Phys. 18, 021001 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    J.X. Zhu, D.J. Pine, D.A. Weitz, Internal reflection of diffusive light in random media, Phys. Rev. A 44, 3948 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    S. Fiebig, C.M. Aegerter, W. Bührer, M. Störzer, E. Akkermans, G. Montambaux, G. Maret, Conservation of energy in coherent backscattering of light, Europhys. Lett. 81, 64004 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    C. Leycuras, H. Le Gall, M. Guillot, A. Marchand, Magnetic susceptibility and Verdet constant in rare earth trifluorides, J. Appl. Phys. 55, 2161 (1984)ADSCrossRefGoogle Scholar
  17. 17.
    Ad Buckingham, Pj Stephens, Magnetic optical activity, Ann. Rev. Phys. Chem. 17, 399 (1966)ADSCrossRefGoogle Scholar
  18. 18.
    M.J. Weber, Handbook of Optical Materials, Laser & Optical Science & Technology (CRC Press, Boca Raton, 2003)Google Scholar
  19. 19.
    M.J. Weber, Faraday rotator materials, Lawrence Livermore Natl. Lab. Rep. M-103 (1982)Google Scholar
  20. 20.
    David Lacoste, Diffusion de la lumière dans les milieux magneto-optiques et chiraux, PhD thesis (Université Joseph Fourier, Grenoble, 1999)Google Scholar
  21. 21.
    F.A. Erbacher, Licht-Vielfachstreuung in magneto-optisch aktiven Medien, PhD thesis (Universität Konstanz, Konstanz, 1992)Google Scholar
  22. 22.
    L. Schertel, Magneto-optical Faraday effect in multiple-scattering media, Master’s thesis (Universität Konstanz, Konstanz, December 2014)Google Scholar
  23. 23.
    R. Lenke, R. Lehner, G. Maret, Magnetic-field effects on coherent backscattering of light in case of Mie spheres, Europhys. Lett. 52, 620 (2000)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Fachbereich Physik, Universität KonstanzKonstanzGermany
  2. 2.Physik-Institut, Universität ZürichZürichSwitzerland

Personalised recommendations