The European Physical Journal Special Topics

, Volume 226, Issue 5, pp 889–904 | Cite as

Study of the molecular mobility of (±)-methocarbamol in the amorphous solid state

  • Joaquim J. Moura Ramos
  • Hermínio P. DiogoEmail author
Regular Article
Part of the following topical collections:
  1. Phase Equilibria and Their Applications


The experimental techniques of differential scanning calorimetry (DSC) and thermally stimulated depolarization currents (TSDC) were used to study the thermal behavior of the pharmaceutical drug (±)-methocarbamol and its slow molecular mobility (in the 10−3–10−2 Hz range) in the amorphous solid state. The possibility of polymorphism was considered based on the DSC results. The glass forming ability and the glass stability were investigated by DSC, and the general kinetic features of the main relaxation, including the fragility or steepness index, were studied by both experimental techniques. The secondary relaxations detected by TSDC revealed fast and slow (Johari-Goldstein) modes. These secondary relaxations of different nature were assigned based on physical aging studies.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.C. Hancock, G. Zografi, Characteristics and significance of the amorphous state in pharmaceutical systems, J. Pharm. Sci. 86, 1 (1997)CrossRefGoogle Scholar
  2. 2.
    L. Yu, Amorphous pharmaceutical solids: preparation, characterization and stabilization, Adv. Drug. Delivery Rev. 48, 27 (2001)CrossRefGoogle Scholar
  3. 3.
    A.M. Kaushal, P. Gupta, A.K. Bansal, Amorphous drug delivery systems: molecular aspects, design, and performance, Crit. Rev. Ther. Drug. Carrier Syst. 21, 133 (2004)CrossRefGoogle Scholar
  4. 4.
    P. Karmwar, K. Graeser, K.C. Gordon, C.J. Strachan, T. Rades, Investigation of properties and recrystallisation behaviour of amorphous indomethacin samples prepared by different methods, Int. J. Pharm. 417, 94 (2011)CrossRefGoogle Scholar
  5. 5.
    A.W. Lim, K. Löbmann, H. Grohganz, T. Rades, N. Chieng, Investigation of physical properties and stability of indomethacin-cimetidine and naproxen-cimetidine co-amorphous systems prepared by quench cooling, coprecipitation and ball milling, J. Pharm. Pharmacol. 68, 36 (2016)CrossRefGoogle Scholar
  6. 6.
    S. Bhattacharya, R. Suryanarayanan, Local mobility in amorphous pharmaceuticals-characterization and implications on stability, J. Pharm. Sci. 98, 2935 (2009)CrossRefGoogle Scholar
  7. 7.
    K. Kothari, V. Ragoonanan, R. Suryanarayanan, Influence of molecular mobility on the physical stability of amorphous pharmaceuticals in the supercooled and glassy states, Mol. Pharm. 11, 3048 (2014)CrossRefGoogle Scholar
  8. 8.
    Y. Aso, S. Yoshioka, S. Kojima, Explanation of the crystallization rate of amorphous nifedipine and phenobarbital from their molecular mobility as measured by 13C nuclear magnetic resonance relaxation time and the relaxation time obtained from the heating rate dependence of the glass transition temperature, J. Pharm. Sci. 90, 798 (2001)CrossRefGoogle Scholar
  9. 9.
    S.P. Bhardwaj, K.K. Arora, E. Kwong, A. Templeton, S.D. Clas, R. Suryanarayanan, Correlation between molecular mobility and physical stability of amorphous itraconazole, Mol. Pharm. 10, 694 (2013)CrossRefGoogle Scholar
  10. 10.
    M. Mehta, V. Ragoonanan, G.B. McKenna, R. Suryanarayanan, Correlation between Molecular Mobility and Physical Stability in Pharmaceutical Glasses, Mol. Pharm. 13, 1267 (2016)CrossRefGoogle Scholar
  11. 11.
    M. Yoshioka, B.C. Hancock, G. Zografi, Crystallization of Indomethacin from the Amorphous State Below and Above Its Glass-Transition Temperature, J. Pharm. Sci. 83, 1700 (1994)CrossRefGoogle Scholar
  12. 12.
    K. Grzybowska, M. Paluch, A. Grzybowski, Z. Wojnarowska, L. Hawelek, K. Kolodziejczyk, K.L. Ngai, Molecular Dynamics and Physical Stability of Amorphous Anti-Inflammatory Drug: Celecoxib, J. Phys. Chem. B. 114, 12792 (2010)CrossRefGoogle Scholar
  13. 13.
    G. Van den Mooter, The use of amorphous solid dispersions: A formulation strategy to overcome poor solubility and dissolution rate, Drug. Discovery Today: Technologies 9, e79 (2012)CrossRefGoogle Scholar
  14. 14.
    T. Vasconcelos, S. Marques, J. das Neves, B. Sarmento, Amorphous solid dispersions: Rational selection of a manufacturing process, Adv. Drug. Delivery Rev. 100, 85 (2016)CrossRefGoogle Scholar
  15. 15.
    M.K. Riekes, A. Engelen, B. Appeltans, P. Rombaut, H.K. Stulzer, G. Van den Mooter, New Perspectives for Fixed Dose Combinations of Poorly Water-Soluble Compounds: a Case Study with Ezetimibe and Lovastatin, Pharm Res 33, 1259 (2016)CrossRefGoogle Scholar
  16. 16.
    S.J. Dengale, H. Grohganz, T. Rades, K. Löbmann, Recent advances in co-amorphous drug formulations, Adv. Drug. Delivery Rev. 100, 116 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Alessi-Severini, F. Jamali, R.T. Coutts, F.M. Pasutto, Methocarbamol (Academic Press, San Diego, 1994), pp. 371–399Google Scholar
  18. 18.
    A.A. Bredikhin, Z.A. Bredikhina, D.V. Zakharychev, A.V. Pashagin, Chiral drugs related to guaifenesin: synthesis and phase properties of methocarbamol and mephenoxalone, Tetrahedron: Asymmetry 18, 1239 (2007)CrossRefGoogle Scholar
  19. 19.
    J.J. Moura Ramos, R. Taveira-Marques, H.P. Diogo, Estimation of the fragility index of indomethacin by DSC using the heating and cooling rate dependency of the glass transition, J. Pharm. Sci. 93, 1503 (2004)CrossRefGoogle Scholar
  20. 20.
    H.P. Diogo, M.T. Viciosa, J.J. Moura Ramos, Thermally Stimulated Currents: principles, methods for data processing and significance of the information provided, Supplementary Data to Thermochimica Acta 623, 29 (2016)CrossRefGoogle Scholar
  21. 21.
    G. Teyssedre, C. Lacabanne, Some considerations about the analysis of thermostimulated depolarization peaks, J. Phys. D: Appl. Phys. 28, 1478 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    J. van Turnhout, Thermally Stimulated Discharge of Polymer Electrets (Elsevier Sci. Pub. Co., Amsterdam, 1975)Google Scholar
  23. 23.
    R. Chen, Y. Kirsh, Analysis of Thermally Stimulated Processes (Pergamon Press, Oxford, 1981)Google Scholar
  24. 24.
    J. van Turnhout, Thermally stimulated discharge of electrets, in G.M. Sessler, editor. Electrets (Springer, Berlin, Heidelberg, 1987), pp. 81–lpg215Google Scholar
  25. 25.
    V.M. Gun’ko, V.I. Zarko, E.V. Goncharuk, L.S. Andriyko, V.V. Turov, Y.M. Nychiporuk, R. Leboda, Skubiszewska-J. Zieba, A.L. Gabchak, V.D. Osovskii, Y.G. Ptushinskii, G.R. Yurchenko, O.A. Mishchuk, P.P. Gorbik, P. Pissis, J.P. Blitz, TSDC spectroscopy of relaxational and interfacial phenomena, Adv. Colloid. Interface Sci. 131, 1 (2007)CrossRefGoogle Scholar
  26. 26.
    B.B. Sauer, Thermally Stimulated Currents: recent developments in characterisation and analysis of polymers, in Applications to Polymers and Plastics, edited by S.Z.D. Cheng (Elsevier, Amsterdam, 2002), pp. 653–711Google Scholar
  27. 27.
    A. Vassilikou-Dova, I.M. Kalogeras, Dielectric analysis (DEA), in Thermal Analysis of Polymers: Fundamentals and Applications, edited by J.D. Menczel, R.B. Prime, 1st edn (John Wiley, Hoboken, New Jersey, 2009), pp. 497–613Google Scholar
  28. 28.
    N. Boutonnet-Fagegaltier, A. Lamure, J. Menegotto, C. Lacabanne, A. Caron, H. Duplaa, M. Bauer, The use of thermally stimulated current spectroscopy in the pharmaceutical sciences, in Thermal Analysis of Pharmaceuticals, edited by D.Q.M. Craig, M. Reading (CRC Press, Boca Raton, 2007), pp. 359–382Google Scholar
  29. 29.
    S. Baker, M.D. Antonijevic, Thermal analysis - dielectric techniques, in Solid State Characterization of Pharmaceutics, edited by R.A. Storey, I. Ymén (Wiley, Chichester, UK, 2011), pp. 187–206Google Scholar
  30. 30.
    M.K. Saini, S.S.N. Murthy, Study of glass transition phenomena in the supercooled liquid phase of methocarbamol, acetaminophen and mephenesin, Thermochim Acta 575, 195 (2014)CrossRefGoogle Scholar
  31. 31.
    K.C. Mercado, G.A. Rodríguez, D.R. Delgado, F. Martínez, A. Romdhani, Solution thermodynamics of methocarbamol in some ethanol + water mixtures, Quím. Nova 35, 1967 (2012)CrossRefGoogle Scholar
  32. 32.
    A.A. Bredikhin, A.T. Gubaidullin, Z.A. Bredikhina, D.B. Krivolapov, A.V. Pashagin, I.A. Litvinov, Absolute configuration and crystal packing for three chiral drugs prone to spontaneous resolution: Guaifenesin, methocarbamol and mephenesin, J. Molec. Struct. 920, 377 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    J.J. Moura Ramos, H.P. Diogo, M.H. Godinho, C. Cruz, K. Merkel, Anomalous thermal behavior of salicylsalicylic acid and evidence for a monotropic transition to a nematic phase, J. Phys. Chem. B 108, 7955 (2004)CrossRefGoogle Scholar
  34. 34.
    R. Svoboda, J. Málek Description of enthalpy relaxation dynamics in terms of TNM model, J. Non-Cryst Solids 378, 186 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    R. Svoboda, How to determine activation energy of glass transition, J. Therm. Anal. Calorim. 118, 1721 (2014)CrossRefGoogle Scholar
  36. 36.
    C.T. Moynihan, A.J. Easteal, J. Wilder, J. Tucker, Dependence of the glass transition temperature on heating and cooling rate, J. Phys. Chem. 78, 2673 (1974)CrossRefGoogle Scholar
  37. 37.
    C.A. Angell, Relaxation in liquids, polymers and plastic crystals – strong/fragile patterns and problems, J. Non-Cryst. Solids 131–133, 13 (1991)CrossRefGoogle Scholar
  38. 38.
    R. Böhmer, C.A. Angell, Local and global relaxations in glass-forming materials, in Disorder Effects on Relaxational Processes, edited by R. Richert, A. Blumen (Springer-Verlag, Berlin, 1994), pp. 11–54Google Scholar
  39. 39.
    L.M. Wang, C.A. Angell, Response to Comment on Direct determination of the fragility indices of glassforming liquids by differential scanning calorimetry: Kinetic versus thermodynamic fragilities, J. Chem. Phys. 118, 10351 (2003)CrossRefGoogle Scholar
  40. 40.
    L.M. Wang, C.A. Angell, R. Richert, Fragility and thermodynamics in nonpolymeric glass-forming liquids, J. Chem. Phys. 125, 074505 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    X. Xia, P.G. Wolynes, Fragilities of liquids predicted from the random first order transition theory of glasses, Proc. Natl. Acad. Sci. USA 97, 2990 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    N.T. Correia, C. Alvarez, J.J. Moura Ramos, Fragility in side-chain liquid crystalline polymers: the TSDC contribution, Polymer 41, 8625 (2000)CrossRefGoogle Scholar
  43. 43.
    N.T. Correia, C. Alvarez, J.J. Moura Ramos, M. Descamps, Molecular motions in molecular glasses as studied by thermally stimulated depolarisation currents (TSDC), Chem. Phys. 252, 151 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    J.J. Moura Ramos, N.T. Correia, The Deborah number, relaxation phenomena and thermally stimulated currents, Phys. Chem. Chem. Phys. 3, 5575 (2001)CrossRefGoogle Scholar
  45. 45.
    H.W. Starkweather, Simple and complex relaxations, Macromolecules 14, 1277 (1981)ADSCrossRefGoogle Scholar
  46. 46.
    H.W. Starkweather, Noncooperative relaxations, Macromolecules 21, 1798 (1988)ADSCrossRefGoogle Scholar
  47. 47.
    H.W. Starkweather, Aspects of simple, non-cooperative relaxations, Polymer 32, 2443 (1991)CrossRefGoogle Scholar
  48. 48.
    N.T. Correia, J.J. Moura Ramos, On the cooperativity of the β-relaxation: A discussion based on dielectric relaxation and thermally stimulated depolarisation currents data, Phys. Chem. Chem. Phys. 2, 5712 (2000)CrossRefGoogle Scholar
  49. 49.
    J.J. Moura Ramos, H.P. Diogo, S.S. Pinto Local motions in L-iditol glass: identifying different types of secondary relaxations, Thermochim. Acta 467, 107 (2008)CrossRefGoogle Scholar
  50. 50.
    S.S. Pinto, J.J. Moura Ramos, H.P. Diogo, The slow molecular mobility in poly(vinyl acetate) revisited: new contributions from Thermally Stimulated Currents, Eur. Polym. J. 45, 2644 (2009)CrossRefGoogle Scholar
  51. 51.
    E. Mora, H.P. Diogo, J.J. Moura Ramos, The slow molecular dynamics in amorphous probucol, Thermochim. Acta 595, 83 (2014)CrossRefGoogle Scholar
  52. 52.
    H.P. Diogo, J.J. Moura Ramos, Contribution of the technique of thermostimulated currents for the elucidation of the nature of the Johari-Goldstein and other secondary relaxations in the vitreous state, IEEE Trans. Dielect. Elect. Insul. 21, 2301 (2014)CrossRefGoogle Scholar
  53. 53.
    M. Paluch, C.M. Roland, S. Pawlus, J. Ziolo, K.L. Ngai, Does the Arrhenius temperature dependence of the Johari-Goldstein relaxation persist above T(g)? Phys. Rev. Lett. 91, 115701 (2003)ADSCrossRefGoogle Scholar
  54. 54.
    K.L. Ngai, Relaxation and diffusion in complex systems (Springer, New York, 2011)Google Scholar
  55. 55.
    K.L. Ngai, An extended coupling model description of the evolution of dynamics with time in supercooled liquids and ionic conductors, J. Phys.: Condens. Matter 15, S1107 (2003)ADSGoogle Scholar
  56. 56.
    S. Capaccioli, K.L. Ngai, Relation between the alpha-relaxation and Johari-Goldstein beta-relaxation of a component in binary miscible mixtures of glass-formers, J. Phys. Chem. B 109, 9727 (2005)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.CQFM – Centro de Química-Física Molecular and IN – Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de LisboaLisboaPortugal
  2. 2.CQE – Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de LisboaLisboaPortugal

Personalised recommendations