The European Physical Journal Special Topics

, Volume 226, Issue 3, pp 373–382 | Cite as

Conduction at the onset of chaos

Regular Article
Part of the following topical collections:
  1. Nonlinearity, Nonequilibrium and Complexity: Questions and Perspectives in Statistical Physics

Abstract

After a general discussion of the thermodynamics of conductive processes, we introduce specific observables enabling the connection of the diffusive transport properties with the microscopic dynamics. We solve the case of Brownian particles, both analytically and numerically, and address then whether aspects of the classic Onsager’s picture generalize to the non-local non-reversible dynamics described by logistic map iterates. While in the chaotic case numerical evidence of a monotonic relaxation is found, at the onset of chaos complex relaxation patterns emerge.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Hertel, Continuum Physics (Springer-Verlag, Berlin, Heidelberg, 2012)Google Scholar
  2. 2.
    L. Onsager, Phys. Rev. 37, 405 (1931)ADSCrossRefGoogle Scholar
  3. 3.
    L. Onsager, Phys. Rev. 38, 2265 (1931)ADSCrossRefGoogle Scholar
  4. 4.
    H.G. Schuster, Deterministic Chaos: An Introduction, 2nd edn. (VCH Publishers, Weinheim, Germany, 1988)Google Scholar
  5. 5.
    C. Beck, F. Schlogl, Thermodynamics of Chaotic Systems (Cambridge University Press, Cambridge, UK, 1993)Google Scholar
  6. 6.
    A. Robledo, Entropy 15, 5178 (2013)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edn. (Wiley, New York, 1985)Google Scholar
  8. 8.
    A. Einstein, Ann. Physik 33, 1275 (1910)ADSCrossRefGoogle Scholar
  9. 9.
    R. Mauri, Non-Equilibrium Thermodynamics in Multiphase Flows (Springer, Dordrecht, 2013)Google Scholar
  10. 10.
    M. Kardar, Statistical Physics of Fields (Cambridge University Press, New York, 2007)Google Scholar
  11. 11.
    P. Attard, J. Chem. Phys. 121, 7076 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    P. Attard, J. Chem. Phys. 122, 154101 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    A. Fick, Poggendorffs Annalen. 94, (1855) 59, reprinted in Journal of Membrane Science 100, 33 (1995)Google Scholar
  14. 14.
    M.S. Green, J. Chem. Phys. 22, 398 (1954)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    R. Kubo, Rep. Progr. Phys. 29, 255 (1966)ADSCrossRefGoogle Scholar
  16. 16.
    R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II. Non-equilibrium Statistical Mechanics (Springer-Verlag, Berlin, 1978)Google Scholar
  17. 17.
    J.L. Doob, Ann. Math. 43, 351 (1942)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    J.L. Doob, Stochastic Processes (Wiley, New York, 1953)Google Scholar
  19. 19.
    C.W. Gardiner, Handbook of Stochastic Methods, 3rd edn. (Springer-Verlag, Berlin, Heidelberg, 2004)Google Scholar
  20. 20.
    F. Baldovin, A. Robledo, Phys. Rev. E 69, 045202 (2004)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    E. Mayoral, A. Robledo, Phys. Rev. E 72, 026209 (2005)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    M.A. Fuentes, A. Robledo, J. Stat. Mech. 2010, P01001 (2010)CrossRefGoogle Scholar
  23. 23.
    A. Díaz-Ruelas, A. Robledo, Europhys. Lett. 105, 40004 (2014)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Dipartimento di Fisica e Astronomia Università di Padova, sezione INFN, and sezione CNISMPadovaItaly

Personalised recommendations