The European Physical Journal Special Topics

, Volume 226, Issue 3, pp 391–400 | Cite as

On salesmen and tourists: Two-step optimization in deterministic foragers

Regular Article
  • 35 Downloads
Part of the following topical collections:
  1. Nonlinearity, Nonequilibrium and Complexity: Questions and Perspectives in Statistical Physics

Abstract

We explore a two-step optimization problem in random environments, the so-called restaurant-coffee shop problem, where a walker aims at visiting the nearest and better restaurant in an area and then move to the nearest and better coffee-shop. This is an extension of the Tourist Problem, a one-step optimization dynamics that can be viewed as a deterministic walk in a random medium. A certain amount of heterogeneity in the values of the resources to be visited causes the emergence of power-laws distributions for the steps performed by the walker, similarly to a Lévy flight. The fluctuations of the step lengths tend to decrease as a consequence of multiple-step planning, thus reducing the foraging uncertainty. We find that the first and second steps of each planned movement play very different roles in heterogeneous environments. The two-step process improves only slightly the foraging efficiency compared to the one-step optimization, at a much higher computational cost. We discuss the implications of these findings for animal and human mobility, in particular in relation to the computational effort that informed agents should deploy to solve search problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.E. Stanley, S.V. Buldyrev, Nature 413, 373 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    G.F. Lima, A.S. Martinez, O. Kinouchi, Phys. Rev. Lett. 87, 010603 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    G.D. Lunga, R. Pogni, R. Basosi, Mol. Phys. 95, 1275 (1998)CrossRefGoogle Scholar
  4. 4.
    W.F. Fagan, M.A. Lewis, M. Auger-Méthé, T. Avgar, S. Benhamou, G. Breed, L. LaDage, U.E. Schlägel, W. Tang, Y.P. Papastamatiou, et al. Ecol. Lett. 16, 1316 (2013)CrossRefGoogle Scholar
  5. 5.
    C. Song, Z. Qu, N. Blumm, A.L. Barabási, Science 327, 1018 (2010)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    G.M. Viswanathan, V. Afanasyev, S.V. Buldyrev, E.J. Murphy, P.A. Prince, H.E. Stanley, Nature 381, 413 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    A. Reynolds, Phys. Life Rev. 14, 59 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    G.M. Viswanathan, S.V. Buldyrev, S. Havlin, M.G.E. da Luz, E.P. Raposo, H.E. Stanley, Nature 401, 911 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    F. Bartumeus, M.G.E. da Luz, G.M. Viswanathan, J. Catalan, Ecology 86, 3078 (2005)CrossRefGoogle Scholar
  10. 10.
    O. Miramontes, D. Boyer, F. Bartumeus, PLoS ONE 7, e34317 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    M.C. Santos, D. Boyer, O. Miramontes, G.M. Viswanathan, E.P. Raposo, J.M. Mateos, M.G.E. da Luz, Phys. Rev. E 75, 061114 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    D. Boyer, G. Ramos-Fernández, O. Miramontes, J.L. Mateos, G. Cocho, H. Larralde, H. Ramos, F. Rojas, Proc. R. Soc. B. 273, 1743 (2006)CrossRefGoogle Scholar
  13. 13.
    D. Boyer, O. López-Corona, J. Phys. A: Math. Theor. 42, 4014 (2009)ADSGoogle Scholar
  14. 14.
    G. Ramos-Fernández, J.L. Mateos, O. Miramontes, G. Cocho, H. Larralde, B. Ayala-Orozco, Behav. Ecol. Sociobol. 55, 223 (2003)Google Scholar
  15. 15.
    D. Brockmann, L. Hufnagel, T. Geisel, Nature 434, 462 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    F. Bartumeus, F. Peters, S. Pueyo, C. Marrasé, J. Catalan, Proc. Natl. Acad. Sci. USA 100, 12771 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    D. Boyer, M.C. Crofoot, P.D. Walsh, J. R. Soc. Interface 9, 842 (2012)CrossRefGoogle Scholar
  18. 18.
    M.C. Gonzáles, C.A. Hidalgo, A.L. Barabási, Nature 453, 778 (2008)Google Scholar
  19. 19.
    A. Baronchelli, F. Radicchi, Chaos, Solitons and Fractals 56, 101 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    E.A. Fronhofer, T. Hovestadt, H.J. Poethke, Oikos 122, 857 (2013)CrossRefGoogle Scholar
  21. 21.
    C. Bracis, E. Gurarie, B. Van Moorter, R.A. Goodwin, PloS one 10, e0136057 (2015)CrossRefGoogle Scholar
  22. 22.
    B.J. Enquist, K.J. Niklas, Nature 410, 655 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    M.E.J. Newman, Contemp. Phys. 46, 323 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    M.F. Shlesinger, J. Klafter, in On Growth and Form (Martinus Nijho, Dordrecht, 1986) pp. 279–283Google Scholar
  25. 25.
    M.F. Shlesinger, J. Klafter, B.J. West, Phys. Rev. Lett. 58, 1100 (1987)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    D. Boyer, O. Miramontes, H. Larralde, J. Phys. A: Math. Theor. 42, 434015 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    K. Black, Business Statistics: For Contemporary Decision Making, 7th edn. (John Wiley and Sons, 2012)Google Scholar
  28. 28.
    C. Janson, Am. J. Prim. 76, 410 (2014)CrossRefGoogle Scholar
  29. 29.
    A. Valero, R.W. Byrne, Anim. Cogn. 10, 305 (2007)CrossRefGoogle Scholar
  30. 30.
    M. Lihoreau, L. Chittka, N.E. Raine, Am. Nat. 176, 744 (2010)CrossRefGoogle Scholar
  31. 31.
    P. Jensen, J. Boisson, H. Larralde, Physica A 351, 551 (2005)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Instituto de Física and C3, Universidad Nacional Autónoma de MéxicoMéxico CDMXMexico
  2. 2.Departamento de Matemática Aplicada a la Ingeniería Aeroespacial, ETSI Aeronáuticos, Universidad Politécnica de MadridMadridSpain

Personalised recommendations