The European Physical Journal Special Topics

, Volume 226, Issue 3, pp 323–329 | Cite as

Relaxation functions and dynamical heterogeneities in a model of chemical gel interfering with glass transition

  • Antonio de CandiaEmail author
  • Annalisa Fierro
  • Raffaele Pastore
  • Massimo Pica Ciamarra
  • Antonio Coniglio
Regular Article
Part of the following topical collections:
  1. Nonlinearity, Nonequilibrium and Complexity: Questions and Perspectives in Statistical Physics


We investigate the heterogeneous dynamics in a model, where chemical gelation and glass transition interplay, focusing on the dynamical susceptibility. Two independent mechanisms give raise to the correlations, which are manifested in the dynamical susceptibility: one is related to the presence of permanent clusters, while the other is due to the increase of particle crowding as the glass transition is approached. The superposition of these two mechanisms originates a variety of different behaviours. We show that these two mechanisms can be unentangled considering the wave vector dependence of the dynamical susceptibility.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.J. Flory Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1954)Google Scholar
  2. 2.
    P.G. de Gennes Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1993)Google Scholar
  3. 3.
    A. Fierro, T. Abete, A. Coniglio, J. Chem. Phys. 131, 194906 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    W. Götze, J. Phys.: Condens. Matter 11, A1 (1999)Google Scholar
  5. 5.
    J.J. Arenzon, A. Coniglio, A. Fierro, M. Sellitto, Phys. Rev. E 90, 020301(R) (2014)ADSCrossRefGoogle Scholar
  6. 6.
    A. Coniglio, J.J. Arenzon, A. Fierro, M. Sellitto, Eur. Phys. J. Special Topics 223, 2297 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    W. Götze Complex dynamics of glass-forming liquids, (Oxford University Press, Oxford, 2009)Google Scholar
  8. 8.
    W. Götze, L. Sjogren, Rep. Prog. Phys. 55, 241 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    R. Pastore, A. de Candia, A. Fierro, M. Pica Ciamarra, A. Coniglio, J. Stat. Mech. 2016, 074011 (2016)CrossRefGoogle Scholar
  10. 10.
    T. Abete, A. de Candia, E. Del Gado, A. Fierro, A. Coniglio, Phys. Rev. Lett. 98, 088301 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    T. Abete, A. de Candia, E. Del Gado, A. Fierro, A. Coniglio, Phys. Rev. E 78, 041404 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    W. Kob, C. Donati, S.J. Plimpton, P.H. Poole, S.C. Glotzer, Phys. Rev. Lett. 79, 2827 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    S. Franz, G. Parisi, J. Phys.: Condens. Matter 12, 6335 (2000)ADSGoogle Scholar
  14. 14.
    L. Berthier et al., Science 310, 1797 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    G. Biroli, J.P. Bouchaud, K. Miyazaki, D.R. Reichman, Phys. Rev. Lett. 97, 195701 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    L. Berthier et al., J. Chem. Phys. 126, 184503 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    C. Dalle-Ferrier et al., Phys. Rev. E 76, 041510 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    R. Pastore, M. Pica Ciamarra, A. Coniglio, Fractals 21, 1350021 (2013)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    F. Mallamace, S.H. Chen, A. Coniglio, L. de Arcangelis, E. Del Gado, A. Fierro, Phys. Rev. E 73, 020402 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    S.H. Chen, W.R. Chen, F. Mallamace, Science 300, 619 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    F. Mallamace, C. Corsaro, H.E. Stanley, D. Mallamace, S.H. Chen, J. Chem. Phys. 139, 214502 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    P. Chaudhuri, P.I. Hurtado, L. Berthier, W. Kob, J. Chem. Phys. 142, 174503 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    P. Chaudhuri, L. Berthier, P.I. Hurtado, W. Kob, Phys. Rev. E 81, 040502 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    N. Khalil, A. de Candia, A. Fierro, M. Pica Ciamarra, A. Coniglio, Soft Matter 10, 4800 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    A. de Candia, E. Del Gado, A. Fierro, A. Coniglio, J. Stat. Mech. 2009, P02052 (2009)CrossRefGoogle Scholar
  26. 26.
    B.D. Lubachevsky, J. Comput. Phys. 94, 255 (1991)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987)Google Scholar
  28. 28.
    D. Stauffer, A. Aharony, Introduction to percolation theory (Taylor & Francis, London, 1992)Google Scholar
  29. 29.
    W. Götze, M. Sperl, Phys. Rev. E 66, 011405 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    K. Dawson, M. Foffi, M. Fuchs, W. Götze, F. Sciortino, M. Sperl, P. Tartaglia, T. Voigtmann, E. Zaccarelli, Phys. Rev. E 63, 011401 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    M. Pica Ciamarra, R. Pastore, A. Coniglio, Soft Matter 12, 358 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    R. Pastore, A. de Candia, A. Fierro, A. Coniglio, M. Pica Ciamarra, J. Stat. Mech. 2016, 054050 (2016)CrossRefGoogle Scholar
  33. 33.
    R. Pastore, A. Coniglio, M. Pica Ciamarra, Soft Matter 11, 7214 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    A. Fierro, A. de Candia, A. Coniglio, Phys. Rev. E 62, 7715 (2000)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  • Antonio de Candia
    • 1
    • 2
    • 3
    Email author
  • Annalisa Fierro
    • 2
  • Raffaele Pastore
    • 2
    • 4
  • Massimo Pica Ciamarra
    • 2
    • 5
  • Antonio Coniglio
    • 1
    • 2
  1. 1.Dipartimento di Fisica, “Ettore Pancini”, Università di Napoli “Federico II”, Complesso Universitario di Monte Sant’Angelo, via CintiaNapoliItaly
  2. 2.CNR-SPIN, via CintiaNapoliItaly
  3. 3.INFN, Sezione di NapoliNapoliItaly
  4. 4.UC Simulation Center, University of Cincinnati, and Procter & Gamble Co., CincinnatiOhioUSA
  5. 5.Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations