Advertisement

The European Physical Journal Special Topics

, Volume 225, Issue 8–9, pp 1441–1461 | Cite as

Comparison of systematic coarse-graining strategies for soluble conjugated polymers

  • C. SchererEmail author
  • D. AndrienkoEmail author
Regular Article Methodological Aspects of Coarse Graining
Part of the following topical collections:
  1. Modern Simulation Approaches in Soft Matter Science: From Fundamental Understanding to Industrial Applications

Abstract

We assess several systematic coarse-graining approaches by coarse-graining poly(3-hexylthiophene-2,5-diyl) (P3HT), a polymer showing π-stacking of the thiophene rings and lamellar ordering of the π-stacked structures. All coarse-grained force fields are ranked according to their ability of preserving the experimentally known crystalline molecular arrangement of P3HT. The coarse-grained force fields parametrized in the amorphous melt turned out to accurately reproduce the structural quantities of the melt, as well as to preserve the lamellar ordering of the P3HT oligomers in π-stacks. However, the exact crystal structure is not reproduced. The combination of Boltzmann inversion for bonded and iterative Boltzmann inversion with pressure correction for nonbonded degrees of freedom gives the best coarse-grained model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. 1.
    J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 4th edn. (Clarendon Press, Oxford: New York, 2002)Google Scholar
  2. 2.
    A. Jansen, Comput. Phys. Commun. 86, 1 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    W.L. Jorgensen, J. Tirado-Rives, J. Am. Chem. Soc. 110, 1657 (1988)CrossRefGoogle Scholar
  4. 4.
    M. Moral, W.J. Son, J.C. Sancho-García, Y. Olivier, L. Muccioli, J. Chem. Theory Comput. 11, 3383 (2015)CrossRefGoogle Scholar
  5. 5.
    W.G. Noid, J.W. Chu, G.S. Ayton, V. Krishna, S. Izvekov, G.A. Voth, A. Das, H.C. Andersen, J. Chem. Phys. 128, 244114 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    D. Reith, M. Pütz, F. Müller-Plathe, J. Comput. Chem. 24, 1624 (2003)CrossRefGoogle Scholar
  7. 7.
    V. Rühle, C. Junghans, A. Lukyanov, K. Kremer, D. Andrienko, J. Chem. Theory. Comput. 5, 3211 (2009)CrossRefGoogle Scholar
  8. 8.
    S. Izvekov, M. Parrinello, C.J. Burnham, G.A. Voth, J. Chem. Phys. 120, 10896 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    M.S. Shell, J. Chem. Phys. 129, 144108 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    J.F. Rudzinski, W.G. Noid, Eur. Phys. J. Special Topics 224, 2193 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    L. Larini, L. Lu, G.A. Voth, J. Chem. Phys. 132, 164107 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    H. Wang, C. Junghans, K. Kremer, Eur. Phys. J. E 28, 221 (2009)CrossRefGoogle Scholar
  13. 13.
    C.F. Abrams, K. Kremer, Macromolecules 36, 260 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    S. Leon, N. van der Vegt, L. Delle Site, K. Kremer, Macromolecules 38, 8078 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    P. Gemünden, C. Poelking, K. Kremer, D. Andrienko, K.C. Daoulas, Macromolecules 46, 5762 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    W. Tschöp, K. Kremer, J. Batoulis, T. Bürger, O. Hahn, Acta Polymer 49, 61 (1998)CrossRefGoogle Scholar
  17. 17.
    C. Poelking, K. Daoulas, A. Troisi, D. Andrienko, in P3HT Revisited – From Molecular Scale to Solar Cell Devices, Vol. 265, edited by S. Ludwigs (Springer Berlin Heidelberg, Berlin, Heidelberg, 2014), p. 139Google Scholar
  18. 18.
    R.D. McCullough, R.D. Lowe, J. Chem. Soc., Chem. Commun. 1, 70 (1992)CrossRefGoogle Scholar
  19. 19.
    M.T. Dang, L. Hirsch, G. Wantz, Adv. Mater. 23, 3597 (2011)CrossRefGoogle Scholar
  20. 20.
    G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 4, 864 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    T.J. Prosa, M.J. Winokur, R.D. McCullough, Macromolecules 29, 3654 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Yuan, J. Zhang, J. Sun, J. Hu, T. Zhang, Y. Duan, Macromolecules 44, 9341 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    D. Dudenko, A. Kiersnowski, J. Shu, W. Pisula, D. Sebastiani, H.W. Spiess, M.R. Hansen, Angew. Chem. Int. Edit. 51, 11068 (2012)CrossRefGoogle Scholar
  24. 24.
    Z. Wu, A. Petzold, T. Henze, T. Thurn-Albrecht, R.H. Lohwasser, M. Sommer, M. Thelakkat, Macromolecules 43, 4646 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    K.J. Ihn, J. Moulton, P. Smith, J. Polym. Sci. Part B Polym. Phys. 31, 735 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    S. Samitsu, T. Shimomura, S. Heike, T. Hashizume, K. Ito, Macromolecules 41, 8000 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    W.D. Oosterbaan, V. Vrindts, S. Berson, S. Guillerez, O. Douhéret, B. Ruttens, J. D'Haen, P. Adriaensens, J. Manca, L. Lutsen, D. Vanderzande, J. Mater. Chem. 19, 5424 (2009)CrossRefGoogle Scholar
  28. 28.
    J.D. Roehling, I. Arslan, A.J. Moulé, J. Mater. Chem. 22, 2498 (2012)CrossRefGoogle Scholar
  29. 29.
    S. Berson, R. De Bettignies, S. Bailly, S. Guillerez, Adv. Funct. Mater. 17, 1377 (2007)CrossRefGoogle Scholar
  30. 30.
    C. Poelking, D. Andrienko, Macromolecules 46, 8941 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    V. Marcon, G. Raos, J. Phys. Chem. B 108, 18053 (2004)CrossRefGoogle Scholar
  32. 32.
    R.S. Bhatta, Y.Y. Yimer, D.S. Perry, M. Tsige, J. Phys. Chem. B 117, 10035 (2013)CrossRefGoogle Scholar
  33. 33.
    D. Curcó, C. Alemán, J. Comput. Chem. 28, 1743 (2007)CrossRefGoogle Scholar
  34. 34.
    K. Do, D.M. Huang, R. Faller, A.J. Moulé, Phys. Chem. Chem. Phys. 12, 14735 (2010)CrossRefGoogle Scholar
  35. 35.
    O. Alexiadis, V.G. Mavrantzas, Macromolecules 46, 2450 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    C.K. Lee, C.W. Pao, C.W. Chu, Eng. Environ. Sci. 4, 4124 (2011)Google Scholar
  37. 37.
    D.M. Huang, R. Faller, K. Do, A.J. Moulé, J. Chem. Theory. Comput. 6, 526 (2010)CrossRefGoogle Scholar
  38. 38.
    D.M. Huang, A.J. Moule, R. Faller, Fluid Phase Equilib. 302, 21 (2011)CrossRefGoogle Scholar
  39. 39.
    K.N. Schwarz, T.W. Kee, D.M. Huang, Nanoscale 5, 2017 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    E. Jankowski, H.S. Marsh, A. Jayaraman, Macromolecules 46, 5775 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    J.A. Merlo, C.D. Frisbie, J. Phys. Chem. B 108, 19169 (2004)CrossRefGoogle Scholar
  42. 42.
    V. Rühle, C. Junghans, Macromol. Theory Simul. 20, 472 (2011)CrossRefGoogle Scholar
  43. 43.
    M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindahl, SoftwareX 1-2, 19 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    W.L. Jorgensen, J. Tirado-Rives, J. Comput. Chem. 26, 1689 (2005)CrossRefGoogle Scholar
  45. 45.
    S. Nosé, Mol. Phys. 52, 255 (1984)ADSCrossRefGoogle Scholar
  46. 46.
    W.G. Hoover, Phys. Rev. A 31, 1695 (1985)ADSCrossRefGoogle Scholar
  47. 47.
    M. Parrinello, A. Rahman, J. Appl. Phys. 52, 7182 (1981)ADSCrossRefGoogle Scholar
  48. 48.
    S. Nosé, M. Klein, Mol. Phys. 50, 1055 (1983)ADSCrossRefGoogle Scholar
  49. 49.
    H.J. Berendsen, J.v. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984)ADSCrossRefGoogle Scholar
  50. 50.
    P. Gemünden, C. Poelking, K. Kremer, K. Daoulas, D. Andrienko, Macromol. Rapid Commun. 36, 1047 (2015)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  1. 1.Max Planck Institute for Polymer ResearchMainzGermany

Personalised recommendations