The European Physical Journal Special Topics

, Volume 225, Issue 8–9, pp 1693–1705 | Cite as

Static polarizability effects on counterion distributions near charged dielectric surfaces: A coarse-grained Molecular Dynamics study employing the Drude model

  • José Rafael BordinEmail author
  • Rudolf PodgornikEmail author
  • Christian HolmEmail author
Regular Article Specific Models to Tackle Fundamental Questions
Part of the following topical collections:
  1. Modern Simulation Approaches in Soft Matter Science: From Fundamental Understanding to Industrial Applications


Coarse-grained implicit solvent Molecular Dynamics (MD) simulations have been used to investigate the structure of the vicinal layer of polarizable counterions close to a charged interface. The classical Drude oscillator model was implemented to describe the static excess polarizability of the ions. The electrostatic layer correction with image charges (ELCIC) method was used to include the effects of the dielectric discontinuity between the aqueous solution and the bounding interfaces for the calculation of the electrostatic interactions. Cases with one or two charged bounding interfaces were investigated. The counterion density profile in the vicinity of the interfaces with different surface charge values was found to depend on the ionic polarizability. Ionic polarization effects are found to be relevant for ions with high excess polarizability near surfaces with high surface charge.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Lyklema, Fundamentals of Interface and Colloidal Science (Academic London, 1995)Google Scholar
  2. 2.
    R.H. French, V.A. Parsegian, R. Podgornik, R.F. Rajter, A. Jagota, J. Luo, D. Asthagiri, M.K. Chaudhury, Y. Chiang, S. Granick, S. Kalinin, M. Kardar, R. Kjellander, D.C. Langreth, J. Lewis, S. Lustig, D. Wesolowski, J.S. Wettlaufer, W. Ching, M. Finnis, F. Houlihan, O.A. von Lilienfeld, C.J. van Oss, T. Zemb, Rev. Mod. Phys. 82, 1887 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Levin, Rep. Prog. Phys. 65, 1577 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    T. Markovich, D. Andelman, R. Podgornik, Charged Membranes: Poisson-Boltzmann theory, DLVO paradigm and beyond, Chapter 9 in: Handbook of Lipid Membranes, edited by C. Safynia, J. Raedler (Taylor & Francis, 2016)Google Scholar
  5. 5.
    A. Naji, M. Kanduč, R. Netz, R. Podgornik, Understanding Soft Condensed Matter via Modeling and Computation, Series in Soft Condensed Matter, Vol. 3, Chap. Exotic Electrostatics: Unusual Features of Electrostatics Interactions between Macroions (World Scientific, Singapore, 2010)Google Scholar
  6. 6.
    A.Y. Grosberg, T.T. Nguyen, B.I. Shklovskii, Rev. Mod. Phys. 74, 329 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    R. Messina, J. Phys.: Condens. Matter 21, 113102 (2009)ADSGoogle Scholar
  8. 8.
    A. Naji, M. Kanduč, J. Forsman, R. Podgornik, J. Chem. Phys. 139, 150901 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    D. Antypov, M.C. Barbosa, C. Holm, Phys. Rev. E 71, 061106 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    G.I. Guerrero-García, E. González-Tovar, M. Chávez-Paéz, M. Louzada-Cassou, J. Chem. Phys. 132, 054903 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    A.P. dos Santos, A. Diehl, Y. Levin, J. Chem. Phys. 130, 124110 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    M. Louzada-Cassou, R. Saavedra-Barrera, D. Henderson, J. Chem. Phys. 77, 5150 (1982)ADSCrossRefGoogle Scholar
  13. 13.
    A. Naji, S. Jungblut, A.G. Moreira, R. Netz, Phys. A Stat. Mech. Appl. 352, 131 (2005)CrossRefGoogle Scholar
  14. 14.
    S. Pianegonda, M.C. Barbosa, Y. Levin, Europhys. Lett. 71, 831 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    A. Diehl, Y. Levin, J. Chem. Phys. 125, 054902 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    A. Diehl, Y. Levin, J. Chem. Phys. 129, 124506 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    G.I. Guerrero-García, E. González-Tovar, M.O. de la Cruz, Soft Matter 6, 2056 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    A.P. dos Santos, A. Diehl, Y. Levin, J. Chem. Phys. 132, 104105 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    T. Das, D. Bratko, L.B. Bhuiyan, C.W. Outhwaite, J. Phys. Chem. 99, 410 (1995)CrossRefGoogle Scholar
  20. 20.
    M.C. Barbosa, M. Deserno, C. Holm, Europhys. Lett. 52, 80 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    D. Ben-Yakoov, D. Andelman, R. Podgornik, J. Chem. Phys. 134, 074705 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    D. Ben-Yakoov, D. Andelman, R. Podgornik, D. Harries, Curr. Opin. Colloid Interface Sci. 16, 542 (2011)CrossRefGoogle Scholar
  23. 23.
    D. Frydel, J. Chem. Phys. 134, 234704 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Levin, A.P. dos Santos, A. Diehl, Phys. Rev. Lett. 103, 257802 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Levin, Phys. Rev. Lett. 102, 147803 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    V. Jadhao, F.J. Solis, M.O. de la Cruz, Phys. Rev. Lett. 109, 223905 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    F. Fahrenberger, O.A. Hickey, J. Smiatek, C. Holm, Phys. Rev. Lett. 115, 118301 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    V. Démeri, D.A. Dean, R. Podgornik, J. Chem. Phys. 137, 174903 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    P. Linse, J. Phys. Chem. 90, 6821 (1986)CrossRefGoogle Scholar
  30. 30.
    R. Messina, J. Chem. Phys. 117, 11062 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    K. Barros, E. Luijten, Phys. Rev. Lett. 113, 017801 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    A. Bakhshandeh, A.P. dos Santos, Y. Levin, Phys. Rev. Lett. 107, 107801 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    J.R. Bordin, A. Diehl, M.C. Barbosa, Y. Levin, Phys. Rev. E 85, 031914 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Z. Xu, W. Cai, X. Cheng, Commun. Comput. Phys. 9, 1056 (2010)MathSciNetCrossRefGoogle Scholar
  35. 35.
    S. Tyagi, A. Arnold, C. Holm, J. Chem. Phys. 129, 204102 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    S. Tyagi, M. Suzen, M. Sega, M.C. Barbosa, S.S. Kantorovich, C. Holm, J. Chem. Phys. 132, 145112 (2010)CrossRefGoogle Scholar
  37. 37.
    F. Fahrenberger, Z. Xu, C. Holm, J. Chem. Phys. 141, 064902 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    F. Fahrenberger, C. Holm, Phys. Rev. E 90, 063304 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    F. Fahrenberger, O.A. Hickey, J. Smiatek, C. Holm, J. Chem. Phys. 143, 243140 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    Z. Wang, Y. Ma, J. Chem. Phys. 136, 234701 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    R. Messina, E.G. Tovar, M. Lozada-Cassou, C. Holm, Europhys. Lett. 60, 383 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    A. Martín-Molina, R. Hidalgo-Álvarez, M. Quesada-Pérez, J. Phys: Condens. Matter 21, 424105 (2009)ADSGoogle Scholar
  43. 43.
    G. Lamoureux, B. Roux, J. Chem. Phys. 119, 3025 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    G. Lamoureux, E. Harder, I.V. Vorobyov, B. Roux, A.D. MacKerell, Chem. Phys. Lett. 418, 245 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    V.M. Anisimov, G. Lamoureux, I.V. Vorobyov, N. Huang, B. Roux, A.D. MacKerrel Jr., J. Chem. Theory Comput. 1, 153 (2005)CrossRefGoogle Scholar
  46. 46.
    W. Yu, P.E.M. Lopes, B. Roux, A.D. MacKerell Jr., J. Chem. Phys. 138, 034508 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    J.A. Lemkul, J. Huang, B. Roux, A.D. MacKerrel Jr., Chem. Rev. 116, 4983 (2016)CrossRefGoogle Scholar
  48. 48.
    B.T. Thole, Chem. Phys. 59, 341 (1981)ADSCrossRefGoogle Scholar
  49. 49.
    G.L. Warren, S. Patel, J. Phys. Chem. C 112, 7455 (2008)CrossRefGoogle Scholar
  50. 50.
    H. Yu, T.W. Whitfield, E. Harder, G. Lamoureux, I.V. Vorobyov, V.M. Anisimov, A.D. MacKerrel Jr., B. Roux, J. Chem. Theory Comput. 6, 774 (2010)CrossRefGoogle Scholar
  51. 51.
    G. Archontis, E. Leontidis, G. Andreou, J. Phys. Chem. B 109, 17957 (2005)CrossRefGoogle Scholar
  52. 52.
    P.E.M. Lopes, J. Huang, J. Shim, Y. Luo, H. Li, B. Roux, A.D. MacKerrel Jr., J. Chem. Theory Comput. 9, 5430 (2013)CrossRefGoogle Scholar
  53. 53.
    A. Savelyev, A.D. MacKerrel Jr., J. Phys. Chem. B 118, 6742 (2014)CrossRefGoogle Scholar
  54. 54.
    C. Schröder, O. Steinhauser, J. Chem. Phys. 133, 154511 (2011)CrossRefGoogle Scholar
  55. 55.
    C. Schröder, Phys. Chem. Chem. Phys. 14, 3089 (2012)CrossRefGoogle Scholar
  56. 56.
    W.L. Jorgensen, J. Chem. Theory Comp. 3, 1877 (2007)CrossRefGoogle Scholar
  57. 57.
    H.J. Limbach, A. Arnold, B.A. Mann, C. Holm, Comput. Phys. Commun. 174, 704 (2006)ADSCrossRefGoogle Scholar
  58. 58.
    A. Arnold, O. Lenz, S. Kesselheim, R. Weeber, F. Fahrenberger, D. Röhm, P. Košovan, C. Holm, in Lecture Notes in Computational Science and Engineering, 89, edited by M. Griebel, M.A. Schweitzer (Springer Berlin Heidelberg, 2013), p. 1Google Scholar
  59. 59.
    A. Arnold, K. Breitsprecher, F. Fahrenberger, S. Kesselheim, O. Lenz, C. Holm, Entropy 15, 4569 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    M. Deserno, C. Holm, J. Chem. Phys. 109, 7678 (1998)ADSCrossRefGoogle Scholar
  61. 61.
    P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987)Google Scholar
  62. 62.
    W. Jiang, D.J. Hardy, J.C. Phillips, A.D. MacKerrel Jr., K. Schulten, B. Roux, J. Phys. Chem. Lett. 2, 87 (2011)CrossRefGoogle Scholar
  63. 63.
    J.A. Lemkul, B. Roux, D. van der Spoel, A.D. MacKerrel Jr., J. Comp. Chem. 36, 1473 (2015)CrossRefGoogle Scholar
  64. 64.
    C. Leung, H. Kinns, B.W. Hoogenboon, S. Howorka, P. Mesquisa, Nano Lett. 9, 2769 (2009)ADSCrossRefGoogle Scholar
  65. 65.
    K. Umeda, K. Kobayashi, N. Oyabu, K. Matsishige, H. Yamada, Nanotech. 26, 285103 (2015)CrossRefGoogle Scholar
  66. 66.
    J.J. Molina, S. Lectez, S. Tazi, M. Salanne, J.-F. Dufrêche, J. Roques, E. Simoni, P.A. Madden, P. Turq, J. Chem. Phys. 134, 014511 (2011)ADSCrossRefGoogle Scholar
  67. 67.
    M. Kanduč, A. Naji, J. Forsman, R. Podgornik, J. Chem. Phys. 137, 174704 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  1. 1.Campus Caçapava do Sul, Universidade Federal do PampaCaçapava do SulBrazil
  2. 2.Department of PhysicsFaculty for Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana and Department of Theoretical Physics, J. Stefan Institute, 1000LjubljanaSlovenia
  3. 3.Institut für Computerphysik, Universität StuttgartStuttgartGermany

Personalised recommendations