Advertisement

The European Physical Journal Special Topics

, Volume 225, Issue 8–9, pp 1743–1756 | Cite as

Solvent effects on optical excitations of poly para phenylene ethynylene studied by QM/MM simulations based on many-body Green's functions theory

  • B. Bagheri
  • M. Karttunen
  • B. Baumeier
Open Access
Regular Article Specific Models to Tackle Fundamental Questions
Part of the following topical collections:
  1. Modern Simulation Approaches in Soft Matter Science: From Fundamental Understanding to Industrial Applications

Abstract

Electronic excitations in dilute solutions of poly para phenylene ethynylene (poly-PPE) are studied using a QM/MM approach combining many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation with polarizable force field models. Oligomers up to a length of 7.5 nm (10 repeat units) functionalized with nonyl side chains are solvated in toluene and water, respectively. After equilibration using atomistic molecular dynamics (MD), the system is partitioned into a quantum region (backbone) embedded into a classical (side chains and solvent) environment. Optical absorption properties are calculated solving the coupled QM/MM system self-consistently and special attention is paid to the effects of solvents. The model allows to differentiate the influence of oligomer conformation induced by the solvation from electronic effects related to local electric fields and polarization. It is found that the electronic environment contributions are negligible compared to the conformational dynamics of the conjugated PPE. An analysis of the electron-hole wave function reveals a sensitivity of energy and localization characteristics of the excited states to bends in the global conformation of the oligomer rather than to the relative of phenyl rings along the backbone.

References

  1. 1.
    B.S. Gaylord, A.J. Heeger, G.C. Bazan, Proc. Natl. Acad. Sci. 99, 10954 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    S.A. Kushon, K.D. Ley, K. Bradford, R.M. Jones, D. McBranch, D. Whitten, Langmuir 18, 7245 (2002)CrossRefGoogle Scholar
  3. 3.
    B.S. Harrison, M.B. Ramey, J.R. Reynolds, K.S. Schanze, J. Amer. Chem. Soc. 122, 8561 (2000)CrossRefGoogle Scholar
  4. 4.
    D.T. McQuade, A.E. Pullen, T.M. Swager, Chem. Rev. 100, 2537 (2000)CrossRefGoogle Scholar
  5. 5.
    I.B. Kim, A. Dunkhorst, J. Gilbert, U.H.F. Bunz, Macromol. 38, 4560 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    M. Liu, P. Kaur, D.H. Waldeck, C. Xue, H. Liu, Langmuir 21, 1687 (2005)CrossRefGoogle Scholar
  7. 7.
    F. Hide, M.A. Diaz-Garcia, B.J. Schwartz, M.R. Andersson, Q. Pei, A.J. Heeger, Science 273, 1833 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    P.K.H. Ho, J.S. Kim, J.H. Burroughes, H. Becker, S.F.Y. Li, T.M. Brown, F. Cacialli, R.H. Friend, Nature 404, 481 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    C. Zhang, D. Braun, A.J. Heeger, J. Appl. Phys. 73, 5177 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    P. Kaur, H. Yue, M. Wu, M. Liu, J. Treece, D.H. Waldeck, C. Xue, H. Liu, J. Phys. Chem. B 111, 8589 (2007)CrossRefGoogle Scholar
  11. 11.
    S. Shaheen, D. Ginley, G. Jabbour, MRS Bull. 30, 10 (2005)CrossRefGoogle Scholar
  12. 12.
    C.J. Brabec, S. Gowrisanker, J.J.M. Halls, D. Laird, S. Jia, S.P. Williams, Adv. Mater. 22, 3839 (2010)CrossRefGoogle Scholar
  13. 13.
    C. Wu, B. Bull, C. Szymanski, K. Christensen, J. McNeill, ACS Nano 2, 2415 (2008)CrossRefGoogle Scholar
  14. 14.
    C.E. Halkyard, M.E. Rampey, L. Kloppenburg, S.L. Studer-Martinez, U.H.F. Bunz, Macromol. 31, 8655 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    D. Tuncel, H.V. Demir, Nanoscale 2, 484 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    H. Yue, M. Wu, C. Xue, S. Velayudham, H. Liu, D.H. Waldeck, J. Phys. Chem. B 112, 8218 (2008)CrossRefGoogle Scholar
  17. 17.
    N. Vukmirovi, L.W. Wang, J. Phys. Chem. 128, 121102 (2008)CrossRefGoogle Scholar
  18. 18.
    N. Vukmirovi, L.W. Wang, Nano Lett. 9, 3996 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    D.P. McMahon, A. Troisi, Chem. Phys. Lett. 480, 210 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Y.H. Chan, C. Wu, F. Ye, Y. Jin, P.B. Smith, D.T. Chiu, Anal. Chem. 83, 1448 (2011)CrossRefGoogle Scholar
  21. 21.
    G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    X. Blase, C. Attaccalite, V. Olevano, Phys. Rev. B 83, 115103 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    B. Baumeier, D. Andrienko, M. Rohlfing, J. Chem. Theory Comput. 8, 2790 (2012)CrossRefGoogle Scholar
  24. 24.
    N. Marom, F. Caruso, X. Ren, O.T. Hofmann, T. Körzdörfer, J.R. Chelikowsky, A. Rubio, M. Schefflẽr, P. Rinke, Phys. Rev. B 86, 245127 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    M.J. van Setten, F. Weigend, F. Evers, J. Chem. Theory Comput. 9, 232 (2013)CrossRefGoogle Scholar
  26. 26.
    X. Blase, C. Attaccalite, Appl. Phys. Lett. 99, 171909 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    B. Baumeier, D. Andrienko, Y. Ma, M. Rohlfing, J. Chem. Theory Comput. 8, 997 (2012)CrossRefGoogle Scholar
  28. 28.
    B. Baumeier, M. Rohlfing, D. Andrienko, J. Chem. Theory Comput. 10, 3104 (2014)CrossRefGoogle Scholar
  29. 29.
    W.L. Jorgensen, J.D. Madura, C.J. Swenson, J. Am. Chem. Soc. 106, 6638 (1984)CrossRefGoogle Scholar
  30. 30.
    W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996)CrossRefGoogle Scholar
  31. 31.
    E.K. Watkins, W.L. Jorgensen, J. Phys. Chem. A 105, 4118 (2001)CrossRefGoogle Scholar
  32. 32.
    S. Maskey, F. Pierce, D. Perahia, G.S. Grest, J. Chem. Phys. 134, 244906 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    S. Maskey, N.C. Osti, D. Perahia, G.S. Grest, ACS Macro Letters 2, 700 (2013)CrossRefGoogle Scholar
  34. 34.
    B. Bagheri, B. Baumeier, M. Karttunen, arxiv: http://arxiv.org/abs/1605.02554 (2016) (submitted)
  35. 35.
    H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, J. Chem. Phys. 91, 6269 (1987)CrossRefGoogle Scholar
  36. 36.
    J. Wong-ekkabut, M. Karttunen, Biochimica et Biophysica Acta (BBA) - Biomembranes, in press, doi:  10.1016/j.bbamem.2016.02.004 (2016)
  37. 37.
    D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, J. Comput. Chem. 26, 1701 (2005)CrossRefGoogle Scholar
  38. 38.
    T. Darden, D. York, L. Pedersen, J. Chem. Phys. 98, 10089 (1993)ADSCrossRefGoogle Scholar
  39. 39.
    U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103, 8577 (1995)ADSCrossRefGoogle Scholar
  40. 40.
    G.A. Cisneros, M. Karttunen, P. Ren, C. Sagui, Chem. Rev. 114, 779 (2014)CrossRefGoogle Scholar
  41. 41.
    L. Verlet, Phys. Rev. 159, 98 (1967)ADSCrossRefGoogle Scholar
  42. 42.
    G.S. Grest, K. Kremer, Phys. Rev. A 33, 3628 (1986)ADSCrossRefGoogle Scholar
  43. 43.
    M. Parrinello, J. Appl. Phys. 52, 7182 (1981)ADSCrossRefGoogle Scholar
  44. 44.
    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 14, 33 (1996)CrossRefGoogle Scholar
  45. 45.
    L. Hedin, S. Lundqvist, in Solid State Physics: Advances in Research and Application, Vol. 23 (Academix Press, New York, 1969), p. 1Google Scholar
  46. 46.
    For typical donor molecules used in organic solar cells, we showed that the use of the TDA overestimates π-π transition energies by 0.2 eV but yields correct character of the excitations [27]Google Scholar
  47. 47.
    F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 73 (2012)Google Scholar
  48. 48.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)ADSCrossRefGoogle Scholar
  49. 49.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)ADSCrossRefGoogle Scholar
  50. 50.
    S.H. Vosko, L. Wilk, M. Nusair, Canadian J. Phys. 58, 1200 (1980)ADSCrossRefGoogle Scholar
  51. 51.
    P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623 (1994)CrossRefGoogle Scholar
  52. 52.
    A. Bergner, M. Dolg, W. Küchle, H. Stoll, H. Preuß, Mol. Phys. 80, 1431 (1993)ADSCrossRefGoogle Scholar
  53. 53.
    R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72, 650 (1980)ADSCrossRefGoogle Scholar
  54. 54.
    The use of ECPs offers a computational advantage as the wave functions entering the GW procedure are smooth close to the nuclei and do not require strongly localized basis functions, keeping the numerical effort tractable. We confirmed that the Kohn-Sham energies obtained from ECP-based calculations do not deviate significantly from all-electron resultsGoogle Scholar
  55. 55.
    Y. Ma, M. Rohlfing, C. Molteni, Phys. Rev. B 80, 241405 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    Y. Ma, M. Rohlfing, C. Molteni, J. Chem. Theory Comput. 6, 257 (2010)CrossRefGoogle Scholar
  57. 57.
    V. Rühle, A. Lukyanov, F. May, M. Schrader, T. Vehoff, J. Kirkpatrick, B. Baumeier, D. Andrienko, J. Chem. Theory Comput. 7, 3335 (2011)CrossRefGoogle Scholar
  58. 58.
    Available on www.votca.org
  59. 59.
    C. Risko, M.D. McGehee, J.L. Bredas, Chem. Sci. 2, 1200 (2011)CrossRefGoogle Scholar
  60. 60.
    F. May, B. Baumeier, C. Lennartz, D. Andrienko, Phys. Rev. Lett. 109, 136401 (2012)ADSCrossRefGoogle Scholar
  61. 61.
    B. Lunkenheimer, A. Köhn, J. Chem. Theory Comput. 9, 977 (2013)CrossRefGoogle Scholar
  62. 62.
    T. Schwabe, K. Sneskov, J.M. Haugaard Olsen, J. Kongsted, O. Christiansen, C. Hättig, J. Chem. Theory Comput. 8, 3274 (2012)CrossRefGoogle Scholar
  63. 63.
    A. Stone, The Theory of Intermolecular Forces, 2nd edn. (Oxford University Press, Oxford, 2013), ISBN 978-0-19-967239-4Google Scholar
  64. 64.
    B. Thole, Chem. Phys. 59, 341 (1981)ADSCrossRefGoogle Scholar
  65. 65.
    P.T. van Duijnen, M. Swart, J. Phys. Chem. A 102, 2399 (1998)CrossRefGoogle Scholar
  66. 66.
    C.M. Breneman, K.B. Wiberg, J. Comput. Chem. 11, 361 (1990)CrossRefGoogle Scholar
  67. 67.
    F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005)CrossRefGoogle Scholar
  68. 68.
    S. Grimme, J. Comput. Chem. 27, 1787 (2006)CrossRefGoogle Scholar
  69. 69.
    D. Perahia, R. Traiphol, U.H.F. Bunz, Macromol. 34, 151 (2001)ADSCrossRefGoogle Scholar
  70. 70.
    U.H.F. Bunz, Macromol. Rapid Commun. 30, 772 (2009)CrossRefGoogle Scholar
  71. 71.
    T. Miteva, L. Palmer, L. Kloppenburg, D. Neher, U.H.F. Bunz, Macromol. 33(3), 652 (2000)ADSCrossRefGoogle Scholar
  72. 72.
    H. Kong, G. He, Mol. Simul. 41, 1060 (2015)CrossRefGoogle Scholar
  73. 73.
    A. Hariharan, J.G. Harris, J. Chem. Phys. 101, 4156 (1994)ADSCrossRefGoogle Scholar
  74. 74.
    N. Reuter, A. Dejaegere, B. Maigret, M. Karplus, J. Phys. Chem. A 104, 1720 (2000)CrossRefGoogle Scholar
  75. 75.
    In the evaluation of the total QM/MM energy, the contribution resulting from the interactions of the static MM partial charges is neglected, since we are ultimately only interested in total energy differences. Note that we do, however, account for the effect of the electric field of these charges on the polarizable quantum and classical partsGoogle Scholar

Copyright information

© The Author(s) 2016

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Department of Mathematics and Computer Science & Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations