Advertisement

The European Physical Journal Special Topics

, Volume 225, Issue 8–9, pp 1707–1722 | Cite as

Dynamics in entangled polyethylene melts

  • K. Michael Salerno
  • Anupriya Agrawal
  • Brandon L. Peters
  • Dvora Perahia
  • Gary S. Grest
Regular Article Specific Models to Tackle Fundamental Questions
Part of the following topical collections:
  1. Modern Simulation Approaches in Soft Matter Science: From Fundamental Understanding to Industrial Applications

Abstract

Polymer dynamics creates distinctive viscoelastic behavior as a result of a coupled interplay of motion at the atomic length scale and motion of the entire macromolecule. Capturing the broad time and length scales of polymeric motion however, remains a challenge. Using linear polyethylene as a model system, we probe the effects of the degree of coarse graining on polymer dynamics. Coarse-grained (CG) potentials are derived using iterative Boltzmann inversion with λ methylene groups per CG bead (denoted CGλ) with λ = 2,3,4 and 6 from a fully-atomistic polyethylene melt simulation. By rescaling time in the CG models by a factor α, the chain mobility for the atomistic and CG models match. We show that independent of the degree of coarse graining, all measured static and dynamic properties are essentially the same once the dynamic scaling factor α and a non-crossing constraint for the CG6 model are included. The speedup of the CG4 model is about 3 times that of the CG3 model and is comparable to that of the CG6 model. Using these CG models we were able to reach times of over 500 μs, allowing us to measure a number of quantities, including the stress relaxation function, plateau modulus and shear viscosity, and compare directly to experiment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Kremer, G.S. Grest, J. Chem. Phys. 92, 5057 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    F. Müller-Plathe, Chem. Phys. Chem. 3, 754 (2002)Google Scholar
  3. 3.
    S.O. Nielsen, C.F. Lopez, G. Srinivas, M.L. Klein, J. Phys. Condens. Mat. 16, R481 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    C. Peter, K. Kremer, Soft Matter 5, 4357 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Li, B.C. Abberton, M. Kröger, W.K. Liu, Polymers 5, 751 (2013)CrossRefGoogle Scholar
  6. 6.
    W. Paul, D.Y. Yoon, G.D. Smith, J. Chem. Phys. 103, 1702 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    S.K. Nath, F.A. Escobedo, J.J. de Pablo, J. Chem. Phys. 108, 9905 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    M.G. Martin, J.I. Siepmann, J. Phys. Chem. B 102, 2569 (1998)CrossRefGoogle Scholar
  9. 9.
    M. Mondello, G.S. Grest, J. Chem. Phys. 103, 7156 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. de Vries, J. Phys. Chem. B 111, 7812 (2007)CrossRefGoogle Scholar
  11. 11.
    S. Izvekov, G.A. Voth, J. Phys. Chem. B 109, 2469 (2005)CrossRefGoogle Scholar
  12. 12.
    M.S. Shell, J. Chem. Phys. 129, 144108 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    V. Rühle, C. Junghans, Macromol. Theor. Simul. 20 (2011)Google Scholar
  14. 14.
    J.T. Padding, W.J. Briels, J.-Phys. Condens. Matt. 23, 233101 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    H. Fukunaga, J.I. Takimoto, M. Doi, J. Chem. Phys. 116, 8183 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    J.T. Padding, W.J. Briels, J. Chem. Phys. 115, 2846 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    H.S. Ashbaugh, H.A. Patel, S.K. Kumar, S. Garde, J. Chem. Phys. 122, 104908 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    X. Guerrault, B. Rousseau, J. Farago, J. Chem. Phys. 121, 6538 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    L.J. Chen, H.J. Qian, Z.Y. Lu, Z.S. Li, C.C. Sun, J. Phys. Chem. B 110, 24093 (2006)CrossRefGoogle Scholar
  20. 20.
    D. Curcó, C. Alemán, Chem. Phys. Lett. 436, 189 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    J.T. Padding, W.J. Briels, J. Chem. Phys. 117, 925 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    J.T. Padding, W.J. Briels, J. Chem. Phys. 118, 10276 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    L. Liu, J.T. Padding, W.K. den Otter, W.J. Briels, J. Chem. Phys. 138, 244912 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    W.L. Jorgensen, J.D. Madura, C.J. Swenson, J. Am. Chem. Soc. 106, 6638 (1984)CrossRefGoogle Scholar
  25. 25.
    W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996)CrossRefGoogle Scholar
  26. 26.
    S.W.I. Siu, K. Pluhackova, R.A. Böckmann, J. Chem. Theory Comput. 8, 1459 (2012)CrossRefGoogle Scholar
  27. 27.
    T. Schneider, E. Stoll, Phys. Rev. B 17, 1302 (1978)ADSCrossRefGoogle Scholar
  28. 28.
    G.S. Grest, K. Kremer, Phys. Rev. A 33, 3628 (1986)ADSCrossRefGoogle Scholar
  29. 29.
    R.E. Isele-Holder, W. Mitchell, A.E. Ismail, J. Chem. Phys. 137, 174107 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    M. Tuckerman, B.J. Berne, G.J. Martyna, J. Chem. Phys. 97, 1990 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    K.M. Salerno, A. Agrawal, D. Perahia, G.S. Grest, Phys. Rev. Lett. 116, 058302 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    J. Mei, J.W. Davenport, G.W. Fernando, Phys. Rev. B 43, 4653 (1991)ADSCrossRefGoogle Scholar
  34. 34.
    G. Milano, F. Müller-Plathe, J. Phys. Chem. B 109, 18609 (2005)CrossRefGoogle Scholar
  35. 35.
    Q. Sun, R. Faller, Comput. Chem. Eng. 29, 2380 (2005)CrossRefGoogle Scholar
  36. 36.
    H. Wang, C. Junghans, K. Kremer, Eur. Phys. J. E 28, 221 (2009)CrossRefGoogle Scholar
  37. 37.
    T.W. Sirk, Y.R. Slizoberg, J.K. Brennan, M. Lisal, J.W. Andzelm, J. Chem. Phys. 136, 134903 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    M. Mondello, G.S. Grest, E.B. Webb III, P. Peczak, J. Chem. Phys. 109, 798 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    L.J. Fetters, D.J. Lohse, D. Richter, T.A. Witten, A. Zirkel, Macromolecules 27, 4639 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    T.A. Witten, S. Milner, Z.G. Wang, Multiphase Macromolecular Syst. (1989)Google Scholar
  41. 41.
    P. Depa, C. Chen, J.K. Maranas, J. Chem. Phys. 134, 014903 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    P.K. Depa, J.K. Maranas, J. Chem. Phys. 123, 094901 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    I.Y. Lyubimov, M.G. Guenza, J. Chem. Phys. 138, 12A546 (2013)CrossRefGoogle Scholar
  44. 44.
    I.Y. Lyubimov, J. McCarty, A. Clark, M.G. Guenza, J. Chem. Phys. 132, 224903 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    V.A. Harmandaris, K. Kremer, Soft Matter 5, 3920 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    V.A. Harmandaris, K. Kremer, Macromolecules 42, 791 (2009)CrossRefGoogle Scholar
  47. 47.
    D. Fritz, K. Koschke, V.A. Harmandaris, N.F.A. van der Vegt, K. Kremer, Phys. Chem. Chem. Phys. 13, 10412 (2011)CrossRefGoogle Scholar
  48. 48.
    S. Izvekov, G.A. Voth, J. Chem. Phys. 125, 151101 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    J.T. Padding, W.J. Briels, J.-Phys. Condens. Matt. 23, 233101 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    P. Espanol, I. Zuniga, Phys. Chem. Chem. Phys. 13, 10538 (2011)CrossRefGoogle Scholar
  51. 51.
    C.C. Fu, P.M. Kulkarni, M.S. Shell, L.G. Leal, J. Chem. Phys. 139, 094107 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    A. Davtyan, J.F. Dama, G.A. Voth, H.C. Andersen, J. Chem. Phys. 142, 154104 (2015)ADSCrossRefGoogle Scholar
  53. 53.
    C. Hijon, P. Espanol, E. Vanden-Eijnden, R. Delgado-Buscalioni, Faraday Discuss. 144, 301 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics. International series of monographs on physics (Clarendon Press, 1988)Google Scholar
  55. 55.
    R.S. Hoy, N.C. Karayiannis, Phys. Rev. E 88, 012601 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    D. Richter, R. Butera, L. Fetters, J. Huang, B. Farago, B. Ewen, Macromolecules 25, 6156 (1992)ADSCrossRefGoogle Scholar
  57. 57.
    P. Schleger, B. Farago, C. Lartigue, A. Kollmar, D. Richter, Phys. Rev. Lett. 81, 124 (1998)ADSCrossRefGoogle Scholar
  58. 58.
    K. Kremer, G.S. Grest, in Monte Carlo and molecular dynamics simulations in polymer science, edited by K. Binder (Oxford University Press, New York, 1995), pp. 194Google Scholar
  59. 59.
    H.P. Hsu, K. Kremer, J. Chem. Phys. 144, 154907 (2016)ADSCrossRefGoogle Scholar
  60. 60.
    J.F. Vega, S. Rastogi, G.W.M. Peters, H.E.H. Meijer, J. Rheol. 48, 663 (2004)ADSCrossRefGoogle Scholar
  61. 61.
    V.R. Raju, G.G. Smith, G. Marin, J.R. Knox, W.W. Graessley, J. Polym. Sci. Pol. Phys. 17, 1183 (1979)ADSCrossRefGoogle Scholar
  62. 62.
    L.J. Fetters, D.J. Lohse, S.T. Milner, W.W. Graessley, Macromolecules 32, 6847 (1999)ADSCrossRefGoogle Scholar
  63. 63.
    L.J. Fetters, D.J. Lohse, W.W. Graessley, J. Polym. Sci. Pol. Phys. 37, 1023 (1999)ADSCrossRefGoogle Scholar
  64. 64.
    C. Baig, V.A. Harmandaris, Macromolecules 43, 3156 (2010)ADSCrossRefGoogle Scholar
  65. 65.
    M. Kröger, S. Hess, Phys. Rev. Lett. 85, 1128 (2000)ADSCrossRefGoogle Scholar
  66. 66.
    G.C. Berry, T.G. Fox, The Viscosity of Polymers and Their Concentrated Solutions (Springer, 1968)Google Scholar
  67. 67.
    J.D. Ferry, Viscoelastic Properties of Polymers (John Wiley & Sons, 1980)Google Scholar
  68. 68.
    S.T. Milner, T.C.B. McLeish, Phys. Rev. Lett. 81, 725 (1998)ADSCrossRefGoogle Scholar
  69. 69.
    W.W. Graessley, S.F. Edwards, Polymer 22, 1329 (1981)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • K. Michael Salerno
    • 1
  • Anupriya Agrawal
    • 2
  • Brandon L. Peters
    • 1
  • Dvora Perahia
    • 3
  • Gary S. Grest
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerque, NM, 87185USA
  2. 2.Department of Mechanical Engineering and Materials ScienceWashington University in St. LouisMO 63130USA
  3. 3.Department of ChemistryClemson UniversityClemson, SC 29634USA

Personalised recommendations