Advertisement

The European Physical Journal Special Topics

, Volume 225, Issue 8–9, pp 1733–1742 | Cite as

A van der Waals density functional theory study of poly(vinylidene difluoride) crystalline phases

  • F. PelizzaEmail author
  • B.R. Smith
  • K. JohnstonEmail author
Regular Article Specific Models to Tackle Fundamental Questions
Part of the following topical collections:
  1. Modern Simulation Approaches in Soft Matter Science: From Fundamental Understanding to Industrial Applications

Abstract

Ferroelectric polymers, such as poly(vinylidene difluoride) (PVDF), have many potential applications in flexible electronic devices. PVDF has six experimentally observed polymorphs, three of which are ferroelectric. In this work we use density functional theory to investigate the structural properties, energetics and polarisation of the stable α-phase, its ferroelectric analogue, the δ-phase, and the β-phase, which has the best ferroelectric properties. The results from a variety of exchange and correlation functionals were compared and it was found that van der Waals (vdW) interactions have an important effect on the calculated crystal structures and energetics, with the vdW-DF functional giving the best agreement with experimental lattice parameters. The spontaneous polarisation was found to strongly correlate with the unit cell volumes, which depend on the functional used. While the relative phase energies were not strongly dependent on the functional, the cohesive energies were significantly underestimated using the PBE functional. The inclusion of vdW interactions is, therefore, important to obtain the correct lattice structures, polarisation and energetics of PVDF polymorphs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.F. Scott, Science 315, 954 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, T. Sakurai, PNAS 102, 12321 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    V. Cauda, G. Canavese, S. Stassi, J. Appl. Poly. Sci., 41667 (2015)Google Scholar
  4. 4.
    M. Poulsen, S. Ducharme, IEEE Trans. Dielectr. Electr. Insul. 17, 1028 (2010)CrossRefGoogle Scholar
  5. 5.
    M. Bachmann, W.L. Gordon, S. Weinhold, J.B. Lando, J. Appl. Phys. 51, 5095 (1980)ADSCrossRefGoogle Scholar
  6. 6.
    M. Li, H.J. Wondergem, M.-J. Spijkman, K. Asadi, I. Katsouras, P.W.M. Blom, D.M. de Leeuw, Nat. Mater. 12, 433 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    R. Gregorio Jr., E.M. Ueno, J. Mat. Sci. 34, 4489 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    S.M. Nakhmanson, M.B. Nardelli, J. Bernholc. Phys. Rev. Lett. 92, 115504 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    S.M. Nakhmanson, M.B. Nardelli, J. Bernholc. Phys. Rev. B 72, 115210 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    H. Su, A. Strachan, W.A. Phys. Rev. B 70, 064101 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    V. Ranjan, L. Yu, Phys. Rev. Lett. 99, 047801 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    W. Wang, H. Fan, Y. Ye, Polymer 51, 3575 (2010)CrossRefGoogle Scholar
  13. 13.
    Y. Pei, X.C. Zeng, J. Appl. Phys. 109, 093514 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    J.C. Li, R.Q. Zhang, C.L. Wang, N.B. Wong, Phys. Rev. B 75, 155408 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    N.J. Ramer, C.M. Raynor, K.A. Stiso, Polymer 47, 424 (2006)CrossRefGoogle Scholar
  16. 16.
    N.J. Ramer, T. Marrone, K.A. Stiso, Polymer 47, 7160 (2006)CrossRefGoogle Scholar
  17. 17.
    S.M. Nakhmanson, R. Korlacki, J.T. Johnston, S. Ducharme, Z. Ge, J.M. Takacs, Phys. Rev. B 81, 174120 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    J. Kleis, B.I. Lundqvist, D.C. Langreth, E. Schröder, Phys. Rev. B 76, 100201(R) (2007)ADSCrossRefGoogle Scholar
  19. 19.
    S. Grimme J. Comput. Chem. 27, 1787 (2006)CrossRefGoogle Scholar
  20. 20.
    M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    K. Lee, E.D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Phys. Rev. B 82, 081101(R) (2010)ADSCrossRefGoogle Scholar
  22. 22.
    P. Giannozzi, S. Baroni, N. Bonini, et al., J. Phys. Condens. Matter 21, 395502 (2009)CrossRefGoogle Scholar
  23. 23.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    T. Thonhauser, V.R. Cooper, S. Li, A. Puzder, P. Hyldgaard, D.C. Langreth, Phys. Rev. B 76, 125112 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    R. Sabatini, E. Kucukbenli, B. Kolb, T. Thonhauser, S. de Gironcoli, J. Phys.: Condens. Matter 24, 424209 (2012)ADSGoogle Scholar
  26. 26.
    R.D. King-Smith, D. Vanderbilt, Phys. Rev. B 47, 1651 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    R. Resta, Rev. Mod. Phys. 66, 899 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    M. Kobayashi, K. Tashiro, H. Tadokoro, Macromol. 8, 158 (1974)ADSCrossRefGoogle Scholar
  29. 29.
    R. Hasegawa, Y. Takahashi, Y. Chatani, H. Tadokoro, Polymer J. 3, 600 (1972)CrossRefGoogle Scholar
  30. 30.
    Y. Takahashi, H. Tadokoro, Macromol. 16(12), 1880 (1983)ADSCrossRefGoogle Scholar
  31. 31.
    A. Itoh, Y. Takahashi, T. Furukawa, H. Yajima, Polymer J. 46, 207 (2014)CrossRefGoogle Scholar
  32. 32.
    W.J. Kim, M.H. Han, Y.-H. Shin, H. Kim, E.K. Lee, J. Phys. Chem. B (2016)Google Scholar
  33. 33.
    F.W. Billmeyer Jr., J. Appl. Phys. 28, 1114 (1957)ADSCrossRefGoogle Scholar
  34. 34.
    N.A. Spaldin, J. Solid. State. Chem. 195, 2 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    J.E. McKinney, G.T. Davis, M.G. Broadhurst, J. Appl. Phys. 51, 1676 (1980)ADSCrossRefGoogle Scholar
  36. 36.
    K. Nakamura, M. Nagai, T. Kanamoto, Y. Takahashi, T. Furukawa, J. Polymer Science Part B: Polymer Physics 39(12), 1371 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    K. Noda, K. Ishida, A. Kubono, T. Horiuchi, H. Yamada, K. Matsushige, J. Appl. Phys. 93, 2866 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    N.J. Ramer, K.A. Stiso, Polymer 46, 10431 (2005)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  1. 1.Department of Chemical and Process EngineeringUniversity of StrathclydeGlasgow G1 1XJUK
  2. 2.WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham BuildingGlasgow G1 1XLUK

Personalised recommendations