The European Physical Journal Special Topics

, Volume 225, Issue 8–9, pp 1817–1841 | Cite as

Fast relaxation of coarse-grained models of polymer interphases by hybrid particle-field molecular dynamics: Polystyrene-silica nanocomposites as an example

  • Antonio De Nicola
  • Toshihiro Kawakatsu
  • Florian Müller-Plathe
  • Giuseppe Milano
Regular Article Specific Models to Tackle Fundamental Questions
Part of the following topical collections:
  1. Modern Simulation Approaches in Soft Matter Science: From Fundamental Understanding to Industrial Applications

Abstract

Polymer composites attract large attention for their industrial use because of their unique features. The preparation of equilibrated melts of long entangled chains in the presence of a solid nanoparticle in molecular dynamics simulations is a very difficult task due to the slow relaxation time. We present a coarse-grained (CG) model suitable for polymer nanocomposites which combines Iterative-Boltzmann-Inversion derived polymer models, the hybrid particle-field representation of non-bonded interactions, and a convenient description of a solid nanoparticle suitable for hybrid particle-field models. The proposed approach is applied to test simulations of well characterized polystyrene-silica nanocomposites models. Finally, procedures for an efficient relaxation of pure polymer melts and interphase structures of large molecular weight nanocomposites are proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.H. Koo, Polymer Nanocomposites: Processing, Characterization, and Application (New York: McGraw-Hill, 2006)Google Scholar
  2. 2.
    R. Krishnamoorti, MRS Bull. 32, 341 (2007)CrossRefGoogle Scholar
  3. 3.
    D. Schmidt, D. Shah, E.P. Giannelis, Curr. Opinion Solid State Mater. Sci. 6, 205 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    V. Ganesan, A. Jayaraman, Soft Matter 10, 13 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    J. Ouyang, C.-W. Chu, C.R. Szmanda, L. Ma, Y. Yang, Nat. Mater. 3, 918 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    S.-W. Lee, C. Mao, C.E. Flynn, A.M. Belcher, Science 296, 892 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    L.D. Bozano, B.W. Kean, V.R. Deline, J.R. Salem, J.C. Scott, Appl. Phys. Lett. 84, 607 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    S.K. Kumar, N. Jouault, B. Benicewicz, T. Neely, Macromolecules 46, 3199 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    G. Allegra, G. Raos, M. Vacatello, Prog. Polymer Sci. 33, 683 (2008)CrossRefGoogle Scholar
  10. 10.
    J. Jancar, J.F. Douglas, F.W. Starr, S.K. Kumar, P. Cassagnau, A.J. Lesser, et al., Polymer 51, 3321 (2010)CrossRefGoogle Scholar
  11. 11.
    G. Raos, J. Idé, ACS Macro Lett. 3, 721 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Karatrantos, N. Clarke, M. Kröger, A Rev. Polymer Rev. 1 (2016)Google Scholar
  13. 13.
    D. Barbier, D. Brown, A.-C. Grillet, S. Neyertz, Macromolecules. 37, 4695 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    G. Milano, G. Santangelo, F. Ragone, L. Cavallo, A. Di Matteo, J. Phys. Chem. C. 115, 15154 (2011)CrossRefGoogle Scholar
  15. 15.
    T.V.M. Ndoro, E. Voyiatzis, A. Ghanbari, D.N. Theodorou, M.C. Boöhm, F. Müller-Plathe, Macromolecules 44, 2316 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    H. Eslami, M. Rahimi, F. Müller-Plathe, Macromolecules 46, 8680 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    A. De Nicola, R. Avolio, F. Della Monica, G. Gentile, M. Cocca, C. Capacchione, et al., RSC Adv. 5, 71336 (2015)CrossRefGoogle Scholar
  18. 18.
    D. Reith, M. Pütz, F. Müller-Plathe, J. Comput. Chem. 24, 1624 (2003)CrossRefGoogle Scholar
  19. 19.
    T. Chen, H.-J. Qian, Y.-L. Zhu, Z.-Y. Lu, Macromolecules 48, 2751 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    A. Ghanbari, T.V.M. Ndoro, F. Leroy, M. Rahimi, M.C. Böhm, F. Müller-Plathe, Macromolecules 45, 572 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    D.M. Huang, R. Faller, K. Do, A.J. Moulé, J. Chem. Theory Comput. 6, 526 (2010)CrossRefGoogle Scholar
  22. 22.
    T. Kawakatsu, Statistical Physics of Polymers (Springer: Berlin, 2004)Google Scholar
  23. 23.
    G.H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Oxford University Press, 2005)Google Scholar
  24. 24.
    M.W. Matsen, M. Schick, Phys. Rev. Lett. 72, 2660 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    F. Drolet, G.H. Fredrickson, Phys. Rev. Lett. 83, 4317 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    G.H. Fredrickson, V. Ganesan, F. Drolet, Macromolecules 35, 16 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Lauw, F.A.M. Leermakers, M.A.C. Stuart, J. Phys. Chem. B. 110, 465 (2006)CrossRefGoogle Scholar
  28. 28.
    D.Q. Ly, T. Honda, T. Kawakatsu, A.V. Zvelindovsky, Macromolecules 41, 4501 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    J.R. Roan, T. Kawakatsu, J. Chem. Phys. 116, 7283 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    J.R. Roan, T. Kawakatsu, J. Chem. Phys. 116, 7295 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    A.C. Balazs, C. Singh, E. Zhulina, Macromolecules 31, 8370 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    F.A. Detcheverry, H. Kang, K.C. Daoulas, M. Müller, P.F. Nealey, J.J. de Pablo, Macromolecules 41, 4989 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    S.W. Sides, B.J. Kim, E.J. Kramer, G.H. Fredrickson, Phys. Rev. Lett., 96 (2006)Google Scholar
  34. 34.
    P.G. Khalatur, 1.16 – Molecular Dynamics Simulations in Polymer Science: Methods and Main Results, edited by K. Matyjaszewski, M. Möller, Polymer Science: A Comprehensive Reference (Amsterdam: Elsevier, 2012), p. 417–60Google Scholar
  35. 35.
    K.M. Langner, G.J.A. Sevink, Soft Matter 8, 5102 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    K.C. Daoulas, M. Muller, J. Chem. Phys. 125, 18 (2006)CrossRefGoogle Scholar
  37. 37.
    M.P. Stoykovich, M. Muller, S.O. Kim, H.H. Solak, E.W. Edwards, J.J. de Pablo, et al., Science 308, 1442 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    A. Ramírez-Hernández, H.S. Suh, P.F. Nealey, J.J. de Pablo, Macromolecules 47, 3520 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Zhao, A. De Nicola, T. Kawakatsu, G. Milano J. Comput. Chem. 33, 868 (2012)CrossRefGoogle Scholar
  40. 40.
    A. De Nicola, S. Hezaveh, Y. Zhao, T. Kawakatsu, D. Roccatano, G. Milano, Micellar drug nanocarriers and biomembranes: how do they interact? Phys. Chem. Chem. Phys. (2014)Google Scholar
  41. 41.
    A. De Nicola, Y. Zhao, T. Kawakatsu, D. Roccatano, G. Milano, J. Chem. Theory Computation 7, 2947 (2011)CrossRefGoogle Scholar
  42. 42.
    A. De Nicola, Y. Zhao, T. Kawakatsu, D. Roccatano, G. Milano, Theor. Chem. Accounts 131, 1167 (2012)CrossRefGoogle Scholar
  43. 43.
    A. De Nicola, G. Milano, T. Kawakatsu, Macromolec. Chem. Phys. 214, 1940 (2013)CrossRefGoogle Scholar
  44. 44.
    G. Milano, T. Kawakatsu, J. Chem. Phys. 130, 214106 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    G. Milano, T. Kawakatsu, J. Chem. Phys. 133, 214102 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    K.C. Daoulas, M. Muller, J.J. de Pablo, P.F. Nealey, G.D. Smith, Soft Matter 2, 573 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    G.J.A. Sevink, M. Charlaganov, J.G.E.M. Soft Matter 9, 2816 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    G.J.A. Sevink, A.V. Zvelindovsky, Macromolecules 38, 7502 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    T. Spyriouni, C. Tzoumanekas, D. Theodorou, F. Muller-Plathe, G. Milano, Macromolecules 40, 3876 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    P.K. Depa, J.K. Maranas, J. Chem. Phys. 123, 094901 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    W. Tschöp, K. Kremer, J. Batoulis, T. Bürger, O. Hahn, Acta Polymerica 49, 61 (1998)CrossRefGoogle Scholar
  52. 52.
    W. Tschöp, K. Kremer, O. Hahn, J. Batoulis, T. Bürger, Acta Polymerica 49, 75 (1998)CrossRefGoogle Scholar
  53. 53.
    G. Milano, F. Muller-Plathe, J. Phys. Chem. B. 109, 18609 (2005)CrossRefGoogle Scholar
  54. 54.
    V.A. Harmandaris, N.P. Adhikari, N.F.A. van der Vegt, K. Kremer, Macromolecules 39, 6708 (2006)ADSCrossRefGoogle Scholar
  55. 55.
    Q. Sun, R. Faller, J. Chem. Theory Comput. 2, 607 (2006)CrossRefGoogle Scholar
  56. 56.
    D.M. Huang, R. Faller, K. Do, A.J. Moulé, J. Chem. Theory Comput. 6, 526 (2009)CrossRefGoogle Scholar
  57. 57.
    A. De Nicola, T. Kawakatsu, C. Rosano, M. Celino, M. Rocco, G. Milano, J. Chem. Theory Comput. 11, 4959 (2015)CrossRefGoogle Scholar
  58. 58.
    G. Milano, T. Kawakatsu, A. De Nicola, Phys. Biol. 10, 045007 (2013)ADSCrossRefGoogle Scholar
  59. 59.
    K.C. Daoulas, M. Muller, M.P. Stoykovich, S.M. Park, Y.J. Papakonstantopoulos, J.J. de Pablo, et al., Phys. Rev. Lett. 96 (2006)Google Scholar
  60. 60.
    M. Rahimi, I. Iriate-Carretero, A. Ghanbari, M.C. Böhm, F. Müller-Plathe, Nanotechnology 23, 305702 (2012)CrossRefGoogle Scholar
  61. 61.
    J.E. Hirsch, Phys. Rev. B. 28, 4059 (1983)ADSCrossRefGoogle Scholar
  62. 62.
    H.C. Andersen, J. Chem. Phys. 72, 2384 (1980)ADSCrossRefGoogle Scholar
  63. 63.
    H.A. Karimi-Varzaneh, H.-J. Qian, X. Chen, P. Carbone, F. Müller-Plathe, J. Comput. Chem. 32, 1475 (2011)CrossRefGoogle Scholar
  64. 64.
    H.J.C. Berendsen, J.P.M. Postma, W.F.v. Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984)ADSCrossRefGoogle Scholar
  65. 65.
    V.A. Harmandaris, D. Reith, N.F.A. van der Vegt, K. Kremer, Macromolecular Chem. Phys. 208, 2109 (2007)CrossRefGoogle Scholar
  66. 66.
    H.-J. Qian, P. Carbone, X. Chen, H.A. Karimi-Varzaneh, C.C. Liew, F. Müller-Plathe, Macromolecules 41, 9919 (2008)ADSCrossRefGoogle Scholar
  67. 67.
    H.A. Karimi-Varzaneh, N.F.A. van der Vegt, F. Müller-Plathe, P. Carbone, Chem. Phys. Chem. 13, 3428 (2012)Google Scholar
  68. 68.
    G. Milano, S. Goudeau, F. Müller-Plathe, J. Polymer Sci. Part B: Polymer Phys. 43, 871 (2005)ADSCrossRefGoogle Scholar
  69. 69.
    A. De Nicola, T. Kawakatsu, G. Milano, J. Chem. Theory Comput. 10, 5651 (2014)CrossRefGoogle Scholar
  70. 70.
    D. Brown, P. Mélé, S. Marceau, N.D. Albérola, Macromolecules 36, 1395 (2003)ADSCrossRefGoogle Scholar
  71. 71.
    L.A. Moreira, G. Zhang, F. Müller, T. Stuehn, K. Kremer, Macromolec. Theory Simul. 24, 419 (2015)CrossRefGoogle Scholar
  72. 72.
    R. Auhl, R. Everaers, G.S. Grest, K. Kremer, S.J. Plimpton, J. Chem. Phys. 119, 12718 (2003)ADSCrossRefGoogle Scholar
  73. 73.
    Y. Ding, A. Kisliuk, A.P. Sokolov, Macromolecules 37, 161 (2004)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • Antonio De Nicola
    • 1
  • Toshihiro Kawakatsu
    • 2
  • Florian Müller-Plathe
    • 3
    • 5
  • Giuseppe Milano
    • 1
    • 4
  1. 1.Dipartimento di Chimica e Biologia, Università degli Studi di SalernoSalernoItaly
  2. 2.Department of PhysicsTohoku UniversityMiyagiJapan
  3. 3.Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces, Technische Universität DarmstadtDarmstadtGermany
  4. 4.IMAST Scarl-Technological District in Polymer and Composite EngineeringNapoliItaly
  5. 5.Presently on leave at: Department of Chemical and Biological Engineering, Princeton UniversityPrinceton, New JerseyUSA

Personalised recommendations