Advertisement

The European Physical Journal Special Topics

, Volume 225, Issue 8–9, pp 1323–1345 | Cite as

Comparison of iterative inverse coarse-graining methods

  • David Rosenberger
  • Martin Hanke
  • Nico F.A. van der VegtEmail author
Regular Article Methodological Aspects of Coarse Graining
Part of the following topical collections:
  1. Modern Simulation Approaches in Soft Matter Science: From Fundamental Understanding to Industrial Applications

Abstract

Deriving potentials for coarse-grained Molecular Dynamics (MD) simulations is frequently done by solving an inverse problem. Methods like Iterative Boltzmann Inversion (IBI) or Inverse Monte Carlo (IMC) have been widely used to solve this problem. The solution obtained by application of these methods guarantees a match in the radial distribution function (RDF) between the underlying fine-grained system and the derived coarse-grained system. However, these methods often fail in reproducing thermodynamic properties. To overcome this deficiency, additional thermodynamic constraints such as pressure or Kirkwood-Buff integrals (KBI) may be added to these methods. In this communication we test the ability of these methods to converge to a known solution of the inverse problem. With this goal in mind we have studied a binary mixture of two simple Lennard-Jones (LJ) fluids, in which no actual coarse-graining is performed. We further discuss whether full convergence is actually needed to achieve thermodynamic representability.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Tschöpp, K. Kremer, J. Batoulis, T. Bürger, O. Hahn, Acta Polym. 49, 61 (1998)CrossRefGoogle Scholar
  2. 2.
    M. Murat, K. Kremer, J. Chem. Phys. 108, 4340 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    F. Müller-Plathe, Chem. Phys. Chem. 3, 754 (2002)Google Scholar
  4. 4.
    M. Praprotnik, L. Delle Site, K. Kremer, Annu. Rev. Phys. Chem. 59, 545 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    C. Peter, K. Kremer, Soft Matter 5, 4357 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    E. Brini, E.A. Algaer, P. Ganguly, C. Li, F. Rodriguez-Ropero, N.F.A. van der Vegt, Soft Matter 9, 2108 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    T. Murtola, A. Bunker, I. Vattulainen, M. Deserno, M. Karttunen, Phys. Chem. Chem. Phys. 11, 1869 (2009)CrossRefGoogle Scholar
  8. 8.
    B. Hess, C. Holm, N.F.A. van der Vegt, J. Chem. Phys. 124, 164509 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Wang, W.G. Noid, P. Liu, G.A. Voth, Phys. Chem. Chem. Phys. 11, 2002 (2009)CrossRefGoogle Scholar
  10. 10.
    E. Brini, V. Marcon, N.F.A. van der Vegt, Phys. Chem. Chem. Phys. 13, 10468 (2011)CrossRefGoogle Scholar
  11. 11.
    D. Reith, M. Puetz, F. Müller-Plathe, J. Comput. Chem. 24, 1624 (2003)CrossRefGoogle Scholar
  12. 12.
    A.P. Lyubartsev, A. Laaksonen, Phy. Rev. E 52(4), 3730 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    F. Ercolessi, J.B. Adams, Europhys. Lett. 26, 583 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    S. Izvekov, G.A. Voth, J. Phys. Chem. B 109, 2469 (2005)CrossRefGoogle Scholar
  15. 15.
    J.W. Mullinax, W.G. Noid, J. Phys. Chem. C 114, 5661 (2010)CrossRefGoogle Scholar
  16. 16.
    M.S. Shell, J. Chem. Phys. 129, 144108 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    R.L. Henderson, Phys. Lett. 49A, 197 (1974)ADSCrossRefGoogle Scholar
  18. 18.
    W G. Noid, J.-W. Chu, G.S. Ayton, V. Krishna, S. Izvekov, G.A. Voth, A. Das, H.C. Andersen, J. Chem. Phys. 128, 244114 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    W.G. Noid, P. Liu, Y. Wang, J.-W. Chu, G.S. Ayton, S. Izvekov, H.C. Andersen, G.A. Voth, J. Chem. Phys. 128, 244115 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    M.E. Johnson, T. Head-Gordon, A.A. Louis, J. Chem. Phys. 126, 144509 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    E. Brini, N.F.A. van der Vegt, J. Chem. Phys. 137, 154113 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    P. Ganguly, N.F.A. van der Vegt, J. Chem. Theory. Comput. 9, 5247 (2013)CrossRefGoogle Scholar
  23. 23.
    L.C. Jacobson, R.M. Kirby, V. Molineo, J. Phys. Chem. B 118, 8190 (2014)CrossRefGoogle Scholar
  24. 24.
    H. Wang, C. Junghans, K. Kremer, Eur. Phys. J. E. 28, 221 (2009)CrossRefGoogle Scholar
  25. 25.
    A. Das, H.C. Andersen, J. Chem. Phys. 132, 164106 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    N.J. Dunn, W.G. Noid, J. Chem. Phys. 143, 243148 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    B. Hess, C. Holm, N.F.A. van der Vegt, J. Chem. Phys. 124, 164509 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    J.W. Shen, C. Li, N.F.A. van der Vegt, C. Peter, J. Chem. Theory. Comput. 7, 1916 (2011)CrossRefGoogle Scholar
  29. 29.
    H.J. Qian, P. Carbone, C. Xiaoyu, H.A. Karimi-Varzaneh, C.C. Liew, F. Müller-Plathe, Macromolecules 41, 9919 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    H. Eslami, H.A. Karimi-Varzaneh, F. Müller-Plathe, Macromolecules 44, 3117 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    M. Langeloth, T. Sugii, M.C. Boehm, F. Müller-Plathe, J. Chem. Phys. 143, 243158 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    C. Peter, L. Delle Site, K. Kremer, Soft Matter 4, 859 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    S. Jain, S. Garde, S.K. Kumar, Ind. Eng. Chem. Res. 45, 5614 (2006)CrossRefGoogle Scholar
  34. 34.
    C. Fu, P.M. Kulkarni, M.S. Shell, L.G. Leal, J. Chem. Phys. 137, 164106 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    D. Ivanizki, Numerical Analysis of the relation between interactions and structures in a molecular fluid, Ph.D Thesis University of Mainz, 2015Google Scholar
  36. 36.
    A. Ben-Naim, Molecular Theory of Solutions (Oxford University Press New York, 2006)Google Scholar
  37. 37.
    J.G. Kirkwood, F.P. Buff, J. Chem. Phys. 19, 774 (1951)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    P. Krüger, S.K. Schnell, D. Bedeaux, S. Kjelstrup, T.J.H. Vlugt, J.-M. Simon, J. Phys. Chem. Lett. 4, 235 (2013)CrossRefGoogle Scholar
  39. 39.
    S. Weerashinge, P.E. Smith, J. Chem. Phys. 118, 10663 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    S. Weerashinge, P.E. Smith, J. Phys. Chem. B 107, 3891 (2003)CrossRefGoogle Scholar
  41. 41.
    S. Weerashinge, P.E. Smith, J. Chem. Phys. 121, 2180 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    S. Weerashinge, P.E. Smith, J. Phys. Chem. B 109, 15080 (2005)CrossRefGoogle Scholar
  43. 43.
    M.E. Lee, N.F.A. van der Vegt, J. Chem. Phys. 122, 114509 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    M.B. Gee, N.R. Cox, Y.F. Jiao, N. Bentenitis, S. Weerashinge, P.E. Smith, J. Chem. Theory Comput. 8, 1802 (2012)CrossRefGoogle Scholar
  45. 45.
    M. Kang, P.E. Smith, J. Comput. Chem. 27, 1477 (2006)CrossRefGoogle Scholar
  46. 46.
    M. Fyta, R.R. Netz, J. Chem. Phys. 136, 124103 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    P. Ganguly, D. Mukherji, C. Junghans, N.F.A van der Vegt, J. Chem. Theor. Comp. 8, 1802 (2012)CrossRefGoogle Scholar
  48. 48.
    P. Ganguly, N.F.A. van der Vegt, J. Chem. Theory. Comput. 9, 1347 (2013)CrossRefGoogle Scholar
  49. 49.
    T.E. Oliveira, P.A. Netz, K. Kremer, C. Junghans, D. Mukherji, J. Chem. Phys. 144, 174106 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    A. Lyubartsev, A. Mirzoev, L-J. Chen, A. Laaksonen Faraday Discuss. 144, 43 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    M. Hanke [arXiv:1603.03899] [math-ph] (2016)
  52. 52.
    M. Hanke [arXiv:1603.03900] [math-ph] (2016)
  53. 53.
    T. Murtola, E. Falck, M. Karttunen, I. Vattulainen, J. Chem. Phys. 126, 075101 (2007)ADSCrossRefGoogle Scholar
  54. 54.
    H.W. Engl, M. Hanke, A. Neubauer Regularization of Inverse Problems (Kluver Academic Publishers, 2000)Google Scholar
  55. 55.
    V. Ruehle, C. Junghans, A. Lukyanov, K. Kremer, D. Andrienko, J. Chem. Theo. Comp. 5, 3211 (2009)CrossRefGoogle Scholar
  56. 56.
    B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theo. Comp. 4, 435 (2008)CrossRefGoogle Scholar
  57. 57.
    V. Ruehle, C. Junghans, Macromol. Theory Simul. 20, 472 (2011)CrossRefGoogle Scholar
  58. 58.
    S.Y. Mashayak, M. Jochum, K. Koschke, N.R. Aluru, V. Ruehle, C. Junghans, PLoS one 10, e131754 (2015)CrossRefGoogle Scholar
  59. 59.
    M. Parrinello, J. Appl. Phys. 52, 7182 (1981)ADSCrossRefGoogle Scholar
  60. 60.
    S. Nosė, M.L. Klein, Mol. Phys. 50, 1055 (1983)ADSCrossRefGoogle Scholar
  61. 61.
  62. 62.
    S.K. Schnell, T.J.H. Vlugt, J.-M. Simon, D. Bedeaux, S. Kjelstrup, Chem. Phys. Lett. 504, 199 (2011)ADSCrossRefGoogle Scholar
  63. 63.
    S.K. Schnell, X. Liu, J.-M. Simon, A. Bardow, D. Bedeaux, T.J.H. Vlugt, S. Kjelstrup, J. Phys. Chem. B 115, 10911 (2011)CrossRefGoogle Scholar
  64. 64.
    T.L. Hill, Thermodynamics of Small Systems, Part 1 (W. A. Benjamin: New York, 1963)Google Scholar
  65. 65.
    A. Villa, C. Peter, N.F.A. van der Vegt, J. Chem. Theory. Comput. 6, 2434 (2010)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • David Rosenberger
    • 1
  • Martin Hanke
    • 2
  • Nico F.A. van der Vegt
    • 1
    Email author
  1. 1.Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces, Technische Universität DarmstadtDarmstadtGermany
  2. 2.Institut für Mathematik, Johannes Gutenberg Universität MainzMainzGermany

Personalised recommendations