Advertisement

The European Physical Journal Special Topics

, Volume 225, Issue 8–9, pp 1723–1732 | Cite as

Orientational dynamics in nematic liquid crystals

A coarse-grained simulation study
  • A. HumpertEmail author
  • A.J. MastersEmail author
  • M.P. AllenEmail author
Regular Article Specific Models to Tackle Fundamental Questions
Part of the following topical collections:
  1. Modern Simulation Approaches in Soft Matter Science: From Fundamental Understanding to Industrial Applications

Abstract

We examine the behaviour of single-particle orientational time correlation functions in nematic liquid crystals. As well as the expected dynamics involving oscillation in a mean-field potential, and occasional jumps between orientations parallel and antiparallel to the director, we provide the first simulation evidence of long-time tails characteristic of coupling to director fluctuations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.J. Masters, Molec. Phys. 95, 251 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    P. Ukleja, J. Pirs, J.W. Doane, Phys. Rev. A 14, 414 (1976)ADSCrossRefGoogle Scholar
  3. 3.
    J.H. Freed, J. Chem. Phys. 66, 4183 (1977)ADSCrossRefGoogle Scholar
  4. 4.
    A. Masters, T. Keyes, J. Stat. Phys. 36, 401 (1984)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    P.R. Luyten, J. Bulthuis, W.M.M.J. Bovée, L. Plomp, J. Chem. Phys. 78, 1712 (1983)ADSCrossRefGoogle Scholar
  6. 6.
    C.G. Gray, K.E. Gubbins, Theory of molecular fluids. 1. Fundamentals (Clarendon Press, Oxford, 1984), ISBN 0-19-855602-0Google Scholar
  7. 7.
    W.A. Steele, Adv. Chem. Phys. 34, 1 (1976)MathSciNetGoogle Scholar
  8. 8.
    R.M. Lynden-Bell, in Molecular liquids: dynamics and Interactions, edited by A.J. Barnes, W.J. Orville-Thomas, J. Yarwood (D. Reidel, 1984), Vol. 135 of NATO ASI Series C, p. 501Google Scholar
  9. 9.
    J.G. Gay, B.J. Berne, J. Chem. Phys. 74, 3316 (1981)ADSCrossRefGoogle Scholar
  10. 10.
    R. Berardi, A.P.J. Emerson, C. Zannoni, J. Chem. Soc. Faraday Trans. 89, 4069 (1993)CrossRefGoogle Scholar
  11. 11.
    D.J. Cleaver, C.M. Care, M.P. Allen, M.P. Neal, Phys. Rev. E 54, 559 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    M.A. Bates, G.R. Luckhurst, J. Chem. Phys. 110, 7087 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    A. Humpert, M.P. Allen, Phys. Rev. Lett. 114, 028301 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    A. Humpert, M.P. Allen, Molec. Phys. 113, 2680 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    E. de Miguel, Molec. Phys. 100, 2449 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    J.M. Ilnytskyi, M.R. Wilson, Comput. Phys. Commun. 134, 23 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    M.P. Allen, M.A. Warren, M.R. Wilson, A. Sauron, W. Smith, J. Chem. Phys. 105, 2850 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    G. Meier, A. Saupe, Mol. Cryst. 1, 515 (1966)CrossRefGoogle Scholar
  19. 19.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, second, paperback edn. (Clarendon Press, Oxford, 1995)Google Scholar
  20. 20.
    J.L. Ericksen, Arch. Rational Mech. Anal. 4, 231 (1960)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    F. Leslie, Arch. Rational Mech. Anal. 28, 265 (1968), ISSN 0003-9527ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    O. Parodi, J. Phys. (France) 31, 581 (1970), ISSN 0302-0738CrossRefGoogle Scholar
  23. 23.
    D. Forster, T.C. Lubensky, P.C. Martin, J. Swift, P.S. Pershan, Phys. Rev. Lett. 26, 1016 (1971)ADSCrossRefGoogle Scholar
  24. 24.
    P.C. Martin, O. Parodi, P.S. Pershan, Phys. Rev. A 6, 2401 (1972)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of WarwickCoventry CV4 7ALUK
  2. 2.School of Chemical Engineering and Analytical Science, The University of ManchesterManchester M13 9PLUK
  3. 3.H. H. Wills Physics LaboratoryBristol BS8 1TLUK

Personalised recommendations