The European Physical Journal Special Topics

, Volume 225, Issue 8–9, pp 1373–1389 | Cite as

Concurrent parametrization against static and kinetic information leads to more robust coarse-grained force fields

  • J.F. Rudzinski
  • T. Bereau
Regular Article Methodological Aspects of Coarse Graining
Part of the following topical collections:
  1. Modern Simulation Approaches in Soft Matter Science: From Fundamental Understanding to Industrial Applications

Abstract

The parametrization of coarse-grained (CG) simulation models for molecular systems often aims at reproducing static properties alone. The reduced molecular friction of the CG representation usually results in faster, albeit inconsistent, dynamics. In this work, we rely on Markov state models to simultaneously characterize the static and kinetic properties of two CG peptide force fields—one top-down and one bottom-up. Instead of a rigorous evolution of CG dynamics (e.g., using a generalized Langevin equation), we attempt to improve the description of kinetics by simply altering the existing CG models, which employ standard Langevin dynamics. By varying masses and relevant force-field parameters, we can improve the timescale separation of the slow kinetic processes, achieve a more consistent ratio of mean-first-passage times between metastable states, and refine the relative free-energies between these states. Importantly, we show that the incorporation of kinetic information into a structure-based parametrization improves the description of the helix-coil transition sampled by a minimal CG model. While structure-based models understabilize the helical state, kinetic constraints help identify CG models that improve the ratio of forward/backward timescales by effectively hindering the sampling of spurious conformational intermediate states.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.F. van Gunsteren, H.J. Berendsen, Angew. Chem. Int. Ed. Engl. 29, 992 (1990)CrossRefGoogle Scholar
  2. 2.
    M. Karplus, J.A. McCammon, Nat. Struct. Mol. Biol. 9, 646 (2002)CrossRefGoogle Scholar
  3. 3.
    T.J. Lane, D. Shukla, K.A. Beauchamp, V.S. Pande, Curr. Opin. Struct. Biol. 23, 58 (2013)CrossRefGoogle Scholar
  4. 4.
    C. Neale, W.D. Bennett, D.P. Tieleman, R. Pomès, J. Chem. Theory Comput. 7, 4175 (2011)CrossRefGoogle Scholar
  5. 5.
    W. Tschöp, K. Kremer, J. Batoulis, T. Bürger, O. Hahn, Acta Poly. 49, 61 (1998)CrossRefGoogle Scholar
  6. 6.
    K. Kremer, F. Müller-Plathe, Mol. Sim. 28, 729 (2002)CrossRefGoogle Scholar
  7. 7.
    C. Peter, K. Kremer, Soft Matter 5, 4357 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    G.A. Voth (ed.), Coarse-Graining of Condensed Phase and Biomolecular Systems (CRC Press, Boca Raton, FL USA, 2009)Google Scholar
  9. 9.
    S. Riniker, J.R. Allison, W.F. van Gunsteren, Phys. Chem. Chem. Phys. 14, 12423 (2012)CrossRefGoogle Scholar
  10. 10.
    W. Noid, J. Chem. Phys. 139, 090901 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    V.A. Harmandaris, D. Reith, N.F.A. Van der Vegt, K. Kremer, Macromol. Chem. Physic. 208, 2109 (2007)CrossRefGoogle Scholar
  12. 12.
    V.A. Harmandaris, K. Kremer, Soft Matter 5, 3920 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    K.M. Salerno, A. Agrawal, D. Perahia, G.S. Grest, Phys. Rev. Lett. 116, 058302 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    R. Zwanzig, Phys. Rev. 124, 983 (1961)ADSCrossRefGoogle Scholar
  15. 15.
    H. Mori, Prog. Theor. Phys. 33, 423 (1965)ADSCrossRefGoogle Scholar
  16. 16.
    S. Izvekov, G.A. Voth, J. Chem. Phys. 125, 151101 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    C. Hijon, P. Español, E. Vanden-Eijnden, R. Delgado-Buscalioni, Faraday Disc. 144, 301 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    S. Markutsya, M.H. Lamm, J. Chem. Phys. 141, 174107 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    S. Izvekov, B.M. Rice, J. Chem. Phys. 140 (2014)Google Scholar
  20. 20.
    G. Deichmann, V. Marcon, N.F.A. van der Vegt, J. Chem. Phys. 141, 224109 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    A. Davtyan, J.F. Dama, G.A. Voth, H.C. Andersen, J. Chem. Phys. 142, 154104 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    I. Lyubimov, M. Guenza, J. Chem. Phys. 138, 12A546 (2013)CrossRefGoogle Scholar
  23. 23.
    N. Guttenberg, J.F. Dama, M.G. Saunders, G.A. Voth, J. Weare, A.R. Dinner, J. Chem. Phys. 138, 094111 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    J.D. Chodera, W.C. Swope, J.W. Pitera, K.A. Dill, Multiscale Model. Simul. 5, 1214 (2006)MathSciNetCrossRefGoogle Scholar
  25. 25.
    F. Noé, C. Schütte, E. Vanden-Eijnden, L. Reich, T.R. Weikl, Proc. Natl. Acad. Sci. USA 106, 19011 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    G.R. Bowman, V.S. Pande, F. Noé (eds.), An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation (Springer Science and Business Media, Dordrecht, Netherlands, 2014)Google Scholar
  27. 27.
    J.D. Chodera, V.S. Pande, Proc. Natl. Acad. Sci. USA 108, 12969 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    T.J. Lane, G.R. Bowman, K. Beauchamp, V.A. Voelz, V.S. Pande, J. Am. Chem. Soc. 133, 18413 (2011)CrossRefGoogle Scholar
  29. 29.
    G.R. Bowman, V.A. Voelz, V.S. Pande, J. Am. Chem. Soc. 133, 664 (2011)CrossRefGoogle Scholar
  30. 30.
    I. Buch, T. Giorgino, G. De Fabritiis, Proc. Natl. Acad. Sci. USA 108, 10184 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    G.R. Bowman, P.L. Geissler, Proc. Natl. Acad. Sci. USA 109, 11681 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    N. Plattner, F. Noé, Nat. Commun. 6, 7653 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    D. Shukla, A. Peck, V.S. Pande, Nat. Commun. 7, 10910 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 14, 33 (1996)CrossRefGoogle Scholar
  35. 35.
    J.F. Rudzinski, K. Kremer, T. Bereau, J. Chem. Phys. 144, 051102 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    J.F. Rudzinski, W.G. Noid, J. Chem. Theor. Comp. 11, 1278 (2015)CrossRefGoogle Scholar
  37. 37.
    W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996)CrossRefGoogle Scholar
  38. 38.
    H. Berendsen, J. Grigera, T. Straatsma, J. Phys. Chem. 91, 6269 (1987)CrossRefGoogle Scholar
  39. 39.
    T. Bereau, M. Deserno, J. Chem. Phys. 130, 235106 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    G.T. Ramachandran, V. Sasisekharan, Adv. Protein Chem. 23, 283 (1968)CrossRefGoogle Scholar
  41. 41.
    T. Bereau, M. Bachmann, M. Deserno, J. Am. Chem. Soc. 132, 13129 (2010)CrossRefGoogle Scholar
  42. 42.
    T. Bereau, M. Deserno, M. Bachmann, Biophys. J. 100, 2764 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    T. Bereau, M. Deserno, J. Membrane Biol. 248, 395 (2014)CrossRefGoogle Scholar
  44. 44.
    T. Bereau, W.D. Bennett, J. Pfaendtner, M. Deserno, M. Karttunen, J. Chem. Phys. 143, 243127 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    T. Bereau, C. Globisch, M. Deserno, C. Peter, J. Chem. Theory Comput. 8, 3750 (2012)CrossRefGoogle Scholar
  46. 46.
    K. Osborne, M. Bachmann, B. Strodel, in From Computational Biophysics to Systems Biology (CBSB11) 2012 (Proceedings, 20–22 July 2011, Julich, Germany), p. 151Google Scholar
  47. 47.
    K.L. Osborne, M. Bachmann, B. Strodel, Proteins: Struct., Funct., Bioinf. 81, 1141 (2013)CrossRefGoogle Scholar
  48. 48.
    K.L. Osborne, B. Barz, M. Bachmann, B. Strodel, Phys. Proc. 53, 90 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    G.O. Rutter, A.H. Brown, D. Quigley, T.R. Walsh, M.P. Allen, Phys. Chem. Chem. Phys. 17, 31741 (2015)CrossRefGoogle Scholar
  50. 50.
    Z.J. Wang, M. Deserno, J. Phys. Chem. B 114, 11207 (2010)CrossRefGoogle Scholar
  51. 51.
    T. Bereau, Z.J. Wang, M. Deserno, J. Chem. Phys. 140, 115101 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    H.J. Limbach, A. Arnold, B.A. Mann, C. Holm, Comput. Phys. Comm. 174, 704 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    H.M. Cho, J.W. Chu, J. Chem. Phys. 131, 134107 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    J.F. Rudzinski, W.G. Noid, J. Phys. Chem. B 118, 8295 (2014)CrossRefGoogle Scholar
  55. 55.
    J.H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J.D. Chodera, C. Schütte, F. Noé, J. Chem. Phys. 134, 174105 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    G.R. Bowman, K.A. Beauchamp, G. Boxer, V.S. Pande, J. Chem. Phys. 131, 124101 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    F. Noé, coworkers, Pyemma, https://github.com/markovmodel/PyEMMA/ (2015)
  58. 58.
    M. Senne, B. Trendelkamp-Schroer, A.S.J.S. Mey, C. Schütte, F. Noé, J. Chem. Theor. Comp. 8, 2223 (2012)CrossRefGoogle Scholar
  59. 59.
    M.K. Scherer, B. Trendelkamp-Schroer, F. Paul, G. Pérez-Hernández, M. Hoffmann, N. Plattner, C. Wehmeyer, J.H. Prinz, F. Noé J. Chem. Theor. Comp. 11, 5525 (2015)CrossRefGoogle Scholar
  60. 60.
    S. Kullback, R.A. Leibler, Ann. Math. Stat. 22, 79 (1951)MathSciNetCrossRefGoogle Scholar
  61. 61.
    T. Bereau, Unconstrained Structure Formation in Coarse-grained Protein Simulations, Ph.D. thesis, Carnegie Mellon University, 2011Google Scholar
  62. 62.
    S.T. Walsh, H. Cheng, J.W. Bryson, H. Roder, W.F. DeGrado, Proc. Natl. Acad. Sci. USA 96, 5486 (1999)ADSCrossRefGoogle Scholar
  63. 63.
    R.L. Henderson, Phys. Lett. A 49, 197 (1974)ADSCrossRefGoogle Scholar
  64. 64.
    J.T. Chayes, L. Chayes, E.H. Lieb, Comm. Math. Phys. 93, 57 (1984)ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    J.F. Rudzinski, W.G. Noid, J. Chem. Phys. 135, 214101 (2011)ADSCrossRefGoogle Scholar
  66. 66.
    H.C. Andersen, D. Chandler, J.D. Weeks, Adv. Chem. Phys. 34, 105 (1976)Google Scholar
  67. 67.
    F. Müller-Plathe, Chem. Phys. Chem. 3, 754 (2002)Google Scholar
  68. 68.
    J.F. Rudzinski, W.G. Noid, J. Phys. Chem. B 116, 8621 (2012)CrossRefGoogle Scholar
  69. 69.
    P. Ganguly, D. Mukherji, C. Junghans, N.F.A. van der Vegt, J. Chem. Theor. Comp. 8, 1802 (2012)CrossRefGoogle Scholar
  70. 70.
    N.J.H. Dunn, W.G. Noid, J. Chem. Phys. 143 (2015)Google Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • J.F. Rudzinski
    • 1
  • T. Bereau
    • 1
  1. 1.Max Planck Institute for Polymer ResearchMainzGermany

Personalised recommendations