Advertisement

The European Physical Journal Special Topics

, Volume 225, Issue 8–9, pp 1683–1692 | Cite as

Simulations of stretching a flexible polyelectrolyte with varying charge separation

  • M.J. Stevens
  • O.A. Saleh
Regular Article Specific Models to Tackle Fundamental Questions
Part of the following topical collections:
  1. Modern Simulation Approaches in Soft Matter Science: From Fundamental Understanding to Industrial Applications

Abstract

We calculated the force-extension curves for a flexible polyelectrolyte chain with varying charge separations by performing Monte Carlo simulations of a 5000 bead chain using a screened Coulomb interaction. At all charge separations, the force-extension curves exhibit a Pincus-like scaling regime at intermediate forces and a logarithmic regime at large forces. As the charge separation increases, the Pincus regime shifts to a larger range of forces and the logarithmic regime starts are larger forces. We also found that force-extension curve for the corresponding neutral chain has a logarithmic regime. Decreasing the diameter of bead in the neutral chain simulations removed the logarithmic regime, and the force-extension curve tends to the freely jointed chain limit. This result shows that only excluded volume is required for the high force logarithmic regime to occur.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. de Gennes, Scaling Concepts in Polymer Physics (Cornell University, Ithaca, NY, 1979)Google Scholar
  2. 2.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University, Oxford, NY, 1986)Google Scholar
  3. 3.
    R.R. Netz, D. Andelman, Phys. Rep. 380, 1 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    C. Holm, J. Joanny, K. Kremer, R.R. Netz, P. Reineker, C. Seidel, T.A. Vilgis, R.G. Winkler, Adv. Polym. Sci. 166, 67 (2004)CrossRefGoogle Scholar
  5. 5.
    A.V. Dobrynin, M. Rubinstein, Prog. Polym. Sci. 30, 1049 (2005)CrossRefGoogle Scholar
  6. 6.
    Q. Liao, A.V. Dobrynin, M. Rubinstein, Macromolecules 36, 3386 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    J.Y. Carrillo, A. Dobrynin, Macromolecules 43, 2589 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    J.M. Carrillo, A. Dobrynin, Macromolecules 44, 5798 (2011)CrossRefGoogle Scholar
  9. 9.
    O.A. Saleh, D.B. McIntosh, P. Pincus, N. Ribeck, Phys. Rev. Lett. 102, 068301 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    D.B. McIntosh, N. Ribeck, O.A. Saleh, Phys. Rev. E 80, 041803 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    D.B. McIntosh, O.A. Saleh, Macromolecules 44, 2328 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    M.J. Stevens, D.B. McIntosh, O. Saleh, Macromolecules 45, 5757 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    M.J. Stevens, D.B. McIntosh, O.A. Saleh, Macromolecules 46, 6369 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    M. Ullner, C.E. Woodward, Macromolecules 35, 1437 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    T. Nguyen, B.I. Shklovskii, Phys. Rev. E 66, 021801 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    R. Everaers, A. Milchev, V. Yamakov, Eur. Phys. J. E 8, 3 (2002)CrossRefGoogle Scholar
  17. 17.
    N.M. Toan, D. Thirumalai, J. Chem. Phys. 136, 235103 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    W. Guth, F. Grun, Kolloid-Z. 101, 248 (1942)CrossRefGoogle Scholar
  19. 19.
    P. Pincus, Macromolecules 9, 386 (1976)ADSCrossRefGoogle Scholar
  20. 20.
    N. Madras, A.D. Sokal, J. Stat. Phys. 50, 109 (1988)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    M.J. Stevens, K. Kremer, J. Phys. II (France) 6, 1607 (1996)CrossRefGoogle Scholar
  22. 22.
    G. Morrison, C. Hyeon, N.M. Toan, B.Y. Ha, D. Thirumalai, Macromolecules 40, 7343 (2007)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • M.J. Stevens
    • 1
  • O.A. Saleh
    • 2
  1. 1.Center for Integrated Nanotechnologies, Sandia National LaboratoriesNew MexicoUSA
  2. 2.Materials Department and BMSE Program, University of CaliforniaCaliforniaUSA

Personalised recommendations