The European Physical Journal Special Topics

, Volume 225, Issue 8–9, pp 1621–1628 | Cite as

Chemical potential calculations in dense liquids using metadynamics

Regular Article Sampling in Phase Space
Part of the following topical collections:
  1. Modern Simulation Approaches in Soft Matter Science: From Fundamental Understanding to Industrial Applications

Abstract

The calculation of chemical potential has traditionally been a challenge in atomistic simulations. One of the most used approaches is Widom's insertion method in which the chemical potential is calculated by periodically attempting to insert an extra particle in the system. In dense systems this method fails since the insertion probability is very low. In this paper we show that in a homogeneous fluid the insertion probability can be increased using metadynamics. We test our method on a supercooled high density binary Lennard-Jones fluid. We find that we can obtain efficiently converged results even when Widom's method fails.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. 1.
    G. Job, F. Herrmann, Eur. J. Phys. 27, 353 (2006)CrossRefGoogle Scholar
  2. 2.
    R. Baierlein, Am. J. Phys. 69, 423 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    B. Widom, J. Chem. Phys. 39, 2808 (1963)ADSCrossRefGoogle Scholar
  4. 4.
    D.J. Adams, Mol. Phys. 28, 1241 (1974)ADSCrossRefGoogle Scholar
  5. 5.
    D.J. Adams, Mol. Phys. 29, 307 (1975)ADSCrossRefGoogle Scholar
  6. 6.
    D.A. Kofke, P.T. Cummings, Mol. Phys. 92, 973 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    M.R. Shirts, V.S. Pande, J. Chem. Phys. 122, 144107 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    K.B. Daly, J.B. Benziger, P.G. Debenedetti, A.Z. Panagiotopoulos, Comput. Phys. Commun. 183, 2054 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    R. Bieshaar, A. Geiger, N.N. Medvedev, Mol. Simulat. 15, 189 (1995)CrossRefGoogle Scholar
  10. 10.
    R. Delgado-Buscalioni, G. De Fabritiis, P.V. Coveney, J. Chem. Phys. 123, 054105 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    J.G. Powles, B. Holtz, W.A.B. Evans, J. Chem. Phys. 101, 7804 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    S.G. Moore, D.R. Wheeler, J. Chem. Phys. 134, 114514 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    A. Agarwal, H. Wang, C. Schütte, L. Delle Site, J. Chem. Phys. 141, 034102 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    A. Barducci, G. Bussi, M. Parrinello, Phys. Rev. Lett. 100, 020603 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    O. Valsson, P. Tiwary, M. Parrinello, Annu. Rev. Phys. Chem. 67 (2016)Google Scholar
  16. 16.
    A. Barducci, M. Bonomi, M. Parrinello, Wiley Interdiscip. Rev. Comput. Mol. Sci. 1, 826 (2011)CrossRefGoogle Scholar
  17. 17.
    J.F. Dama, M. Parrinello, G.A. Voth, Phys. Rev. Lett. 112, 240602 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    P. Tiwary, M. Parrinello, J. Phys. Chem. B 119, 736 (2015)CrossRefGoogle Scholar
  19. 19.
    M. Bonomi, A. Barducci, M. Parrinello, J. Comput. Chem. 30, 1615 (2009)CrossRefGoogle Scholar
  20. 20.
    C.H. Bennett, J. Comput. Phys. 22, 245 (1976)ADSCrossRefGoogle Scholar
  21. 21.
    W. Kob, H.C. Andersen, Phys. Rev. Lett. 73, 1376 (1994)ADSCrossRefGoogle Scholar
  22. 22.
    W. Kob, H.C. Andersen, Phys. Rev. E 51, 4626 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys. 126, 014101 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008)CrossRefGoogle Scholar
  25. 25.
    G.A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni, G. Bussi, Comput. Phys. Commun. 185, 604 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    N. Lu, D.A. Kofke, J. Chem. Phys. 114, 7303 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    O. Valsson, M. Parrinello, Phys. Rev. Lett. 113, 090601 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    O. Valsson, M. Parrinello, J. Chem. Theory Comput. 11, 1996 (2015)CrossRefGoogle Scholar
  29. 29.
    R.W. Zwanzig, J. Chem. Phys. 22, 1420 (1954)ADSCrossRefGoogle Scholar
  30. 30.
    M.P. Allen, D.J. Tildesley, Computer simulation of liquids (Oxford University Press, 1989)Google Scholar
  31. 31.
    P. Kollman, Chem. Rev. 93, 2395 (1993)CrossRefGoogle Scholar
  32. 32.
    D. Frenkel, B. Smit, Understanding molecular simulation: from algorithms to applications (Academic Press, 2001)Google Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  1. 1.Department of Chemistry and Applied BiosciencesZurichSwitzerland
  2. 2.Institute of Computational Science, Università della Svizzera italianaLuganoSwitzerland
  3. 3.Institute for Molecular Engineering, The University of ChicagoChicagoUSA

Personalised recommendations