Advertisement

The European Physical Journal Special Topics

, Volume 225, Issue 8–9, pp 1643–1662 | Cite as

The raspberry model for protein-like particles: Ellipsoids and confinement in cylindrical pores

  • Vincent D. Ustach
  • Roland Faller
Regular Article Specific Models to Tackle Fundamental Questions
Part of the following topical collections:
  1. Modern Simulation Approaches in Soft Matter Science: From Fundamental Understanding to Industrial Applications

Abstract

The study of protein mass transport via atomistic simulation requires time and length scales beyond the computational capabilities of modern computer systems. The raspberry model for colloidal particles in combination with the mesoscopic hydrodynamic method of lattice Boltzmann facilitates coarse-grained simulations that are on the order of microseconds and hundreds of nanometers for the study of diffusive transport of protein-like colloid particles. The raspberry model reproduces linearity in resistance to motion versus particle size and correct enhanced drag within cylindrical pores at off-center coordinates for spherical particles. Owing to the high aspect ratio of many proteins, ellipsoidal raspberry colloid particles were constructed and reproduced the geometric resistance factors of Perrin and of Happel and Brenner in the laboratory-frame and in the moving body-frame. Accurate body-frame rotations during diffusive motion have been captured for the first time using projections of displacements. The spatial discretization of the fluid leads to a renormalization of the hydrodynamic radius, however, the data describes a self-consistent hydrodynamic frame within this renormalized system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. 1.
    M. Davenport, K. Healy, M. Pevarnik, N. Teslich, S. Cabrini, A.P. Morrison, Z.S. Siwy, S.E. Létant, ACS Nano 6, 8366 (2012)CrossRefGoogle Scholar
  2. 2.
    C. Plesa, S.W. Kowalczyk, R. Zinsmeester, A.Y. Grosberg, Y. Rabin, C. Dekker, Nano Lett. 13, 658 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    D. Fologea, B. Ledden, D.S. McNabb, J. Li, Appl. Phys. Lett. 91, 053901 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    G.B. Lesinksi, S. Sharma, K.A. Varker, P. Sinha, M. Ferrari, W.E. Carson III, Biomed. Microdevices 7, 71 (2005)CrossRefGoogle Scholar
  5. 5.
    S. El-Safty, M.A. Shenashen, Anal. Chim. Acta 694, 151 (2011)CrossRefGoogle Scholar
  6. 6.
    W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal Dispersions (Cambridge University Press, Cambridge, 1989)Google Scholar
  7. 7.
    P Dechadilok, W.M. Deen, Ind. Eng. Chem. Res. 45, 6953 (2006)CrossRefGoogle Scholar
  8. 8.
    T. Frembgen-Kesner, A.H. Elcock, J. Chem. Theory Comput. 5, 242 (2009)CrossRefGoogle Scholar
  9. 9.
    D. Ridgway, G. Broderick, A. Lopez-Campistrous, M. Ru'aini, P. Winter, M. Hamilton, P. Boulanger, A. Kovalenko, M.J. Ellison, Biophys. J. 94, 3748 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    T. Ando, J. Skolnick, Proc. Natl. Acad. Sci. 107, 18457 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    M. Długosz, J. Trylska, BMC Biophys. 4, 18457 (2011)Google Scholar
  12. 12.
    P. Mereghetti, R.C. Wade, J. Phys. Chem. 116, 8523 (2012)CrossRefGoogle Scholar
  13. 13.
    M. Javanainen, H. Hammaren, L. Monticelli, J.-H. Jeon, M.S. Miettinen, H. Martinez-Seara, R. Metzlerad, I. Vattulainen, Faraday Discuss. 161, 397 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    J.E. Goose, M.S.P. Sansom, PLoS Comput. Biol. 9, e1003033 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    S.K. Kannam, S.C. Kim, P.R. Rogers, N. Gunn, J. Wagner, S. Harrer, M.T. Downton, Nanotechnology 25, 155502 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    V. Wong, D.A. Case, J. Phys. Chem. B 112, 6013 (2008)CrossRefGoogle Scholar
  17. 17.
    J. Liang, G. Fieg, F.J. Keil, S. Jakobtorweihen, Ind. Eng. Chem. Res. 51, 16049 (2012)CrossRefGoogle Scholar
  18. 18.
    L. Monticelli, S.K. Kandasamy, X. Periole, R.G. Larson, D.P. Tieleman, S.J. Marrink, J. Chem. Theory Comput. 4, 819 (2008)CrossRefGoogle Scholar
  19. 19.
    J. Zavadlav, M. Nuno Melo, S.J. Marrink, M. Praprotnik, J. Chem. Phys. 40, 054114 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    P.H. Lee, V. Helms, T. Geyer, J. Chem. Phys. 137, 145105 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    J.W. Tringe, N. Ileri, H.W. Levie, P. Storeve, V. Ustach, R. Faller, P. Renaud, Chem. Phys. 457, 19 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    L. Javidpour, M. Reza Rahimi Tabar, M. Sahimi, J. Chem. Phys. 130, 085105 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Z. Yang, S. Li, L. Zhang, A. Ur Rehman, H. Liang, J. Chem. Phys. 133, 154903 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    T.Z. Jubery, A.S. Prabhu, M.J. Kim, P. Dutta, Electrophoresis 33, 325 (2012)CrossRefGoogle Scholar
  25. 25.
    F. Roosen-Runge, M. Hennig, F. Zhang, R.M.J. Jacobs, M. Sztucki, H. Schober, T. Seydel, F. Schreiber, PNAS 108, 11815 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Y.E. Ryabov, C. Geraghty, A. Varshney, D. Fushman, J. Am. Chem. Soc. 128, 15432 (2006)CrossRefGoogle Scholar
  27. 27.
    I.B. Kovalenko, A.M. Abaturova, P.A. Gromov, D.M. Ustinin, E.A. Grachev, G.Yu Riznichenko, A.B. Rubin, Phys. Biol. 3, 121 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    J. Schluttig, C.B. Korn, U.S. Schwarz, Phys. Rev. E 81, 030902 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    A. Einstein, Ann. der Physik 322, 549 (1905)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Han, A.M. Alsayed, M. Nobili, J. Zhang, T.C. Lubensky, A.G. Yodh, Science 314, 626 (2006)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    D. Magde, E. Elson, W.W. Webb, Phys. Rev. Lett. 29, 705 (1972)ADSCrossRefGoogle Scholar
  32. 32.
    Y.Y. Kuttner, N. Kozer, E. Segal, G. Schreiber, G. Haran, J. Am. Chem. Soc. 127, 15138 (2005)CrossRefGoogle Scholar
  33. 33.
    J.R. Ku, P. Stroeve, Langmuir 20, 2030 (2004)CrossRefGoogle Scholar
  34. 34.
    F. Perrin, J. Phys. Radium 5, 497 (1934)CrossRefGoogle Scholar
  35. 35.
    F. Perrin, J. Phys. Radium 7, 1 (1936)CrossRefGoogle Scholar
  36. 36.
    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics: with special applications to particulate media (Martinus Nijhoff Publishers, Netherlands, 1983), p. 220Google Scholar
  37. 37.
    J.J.L. Higdon, G.P. Muldowney, J. Fluid. Mech. 298, 193 (1995)ADSCrossRefGoogle Scholar
  38. 38.
    V. Lobaskin, B. Dünweg, New J. Phys. 6, 54 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    S. Succi, The lattice Boltzmann equation for fluid dynamics and beyond (Oxford Science Publications, Oxford, 2001)Google Scholar
  40. 40.
    B. Dünweg, A.J.C. Ladd, Adv. Poly. Sci. 298, 89 (2009)Google Scholar
  41. 41.
    T. Soddemann, B. Dünweg, K. Kremer, Phys. Rev. E 68, 046702 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    J.F. Brady, Ann. Rev. Fluid Mech. 20, 111 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    G.R. McNamara, G. Zanetti, Phys. Rev. Lett. 61, 2332 (1988)ADSCrossRefGoogle Scholar
  44. 44.
    P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954)ADSCrossRefGoogle Scholar
  45. 45.
    P. Lallemand, D. d’Humières, L.S. Luo, R. Rubeinstein, Phys. Rev. E 67, 021203 (2003)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    A.J.C. Ladd, J. Fluid Mech. 271, 285 (1994)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    C.K. Aidun, Y. Lu, E.-J. Ding, J. Fluid Mech. 373, 287 (1998)ADSCrossRefGoogle Scholar
  48. 48.
    N.-Q. Nguyen, A.J.C. Ladd, Phys. Rev. E 66, 046708 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    F. Janoschek, F. Toschi, J. Hartin, Phys. Rev. E 82, 056710 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    F. Günther, F. Janoschek, S. Frijters, J. Harting, Comput. Fluids 80, 184 (2013)CrossRefGoogle Scholar
  51. 51.
    G.B. Davies, T. Krüger, P.V. Coveney, J. Harting, F. Bresme, Adv. Mat. 26, 6715 (2014)CrossRefGoogle Scholar
  52. 52.
    P. Ahlrichs, B. Dünweg, J. Chem. Phys. 111, 8225 (1999)ADSCrossRefGoogle Scholar
  53. 53.
    D. Roehm, A. Arnold, Eur. Phys. J. Special Topics 210, 89 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    A. Arkhipov, P.L Freddolino, K. Schulten, Structure 14, 1767 (2006)CrossRefGoogle Scholar
  55. 55.
    M. Baaden, S.J. Marrink, Curr. Opin. Struct. Bio. 23, 878 (2013)CrossRefGoogle Scholar
  56. 56.
    L.P. Fischer, T. Peter, C. Holm, J. de Graaf, J. Chem. Phys. 143, 084107 (2015)ADSCrossRefGoogle Scholar
  57. 57.
    J. de Graaf, T. Peter, L.P. Fischer, C. Holm, J. Chem. Phys. 143, 084108 (2015)ADSCrossRefGoogle Scholar
  58. 58.
    J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys 54, 5237 (1971)ADSCrossRefGoogle Scholar
  59. 59.
    A. Arnold, O. Lenz, S. Kesselheim, R. Weeber, F. Fahrenberger, D. Roehm, P. Košovan, C. Holm, in Meshfree Methods for Partial Differential Equations VI, Springer, 2013, edited by M. Griebel and M. A. Schweitzer (EDP Sciences, Springer-Verlag, 2013)Google Scholar
  60. 60.
    J.V. Sengers, J.T.R. Watson, J. Phys. Chem. Ref. Data 15, 1291 (1986)ADSCrossRefGoogle Scholar
  61. 61.
    I.P. Omelyan, Comput. Phys. 12, 97 (1998)ADSCrossRefGoogle Scholar
  62. 62.
    N.S. Martys, R.D. Mountain, Phys. Rev. E 59, 3733 (1999)ADSCrossRefGoogle Scholar
  63. 63.
    H. Hasimoto, J. Fluid Mech. 5, 317 (1959)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    G. Segré, A. Silberberg, Nature 189, 209 (1961)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of California DavisDavisUSA

Personalised recommendations