The European Physical Journal Special Topics

, Volume 225, Issue 13–14, pp 2645–2654 | Cite as

Global isochrons of a planar system near a phaseless set with saddle equilibria

Regular Article Numerical Continuation in Self-sustained Oscillators
  • 43 Downloads
Part of the following topical collections:
  1. Temporal and Spatio-Temporal Dynamic Instabilities: Novel Computational and Experimental Approaches

Abstract

Given an attracting periodic orbit of a system of ordinary differential equations, one can assign an asymptotic phase to any initial condition that approaches such a periodic orbit. All initial conditions with the same asymptotic phase lie on what is known as an isochron. Isochrons foliate the basin of attraction, and may have intriguing geometric properties. We present here two cases of a planar vector field for which the basin boundary — also referred to as the phaseless set — contains saddle equilibria and their stable manifolds. A continuation-based approach, in combination with Poincaré compactification when the basin is unbounded, allows us to compute isochrons accurately and visualise them as smooth curves to clarify their overall geometry.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Castejón, A. Guillamon, G. Huguet, J. Math. Neurosci. 3, 13 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    L. Glass, M.C. Mackey, From Clocks to Chaos (Princeton, 1988)Google Scholar
  3. 3.
    L. Glass, A.T. Winfree, Am. J. Physiol. – Regul. Integr. Comp. Physiol. 246, R251 (1984)Google Scholar
  4. 4.
    E.A. González Velasco, Trans. Am. Math. Soc. 143, 201 (1969)CrossRefGoogle Scholar
  5. 5.
    J. Guckenheimer, J. Math. Biol. 1, 259 (1975)MathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Guillamon, G. Huguet, J. Appl. Dyn. Syst. 8, 1005 (2009)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    G. Huguet, R. de la Llave, J. Appl. Dyn. Syst. 12, 1763 (2013)CrossRefGoogle Scholar
  8. 8.
    P. Langfield, B. Krauskopf, H.M. Osinga, Chaos. 24, 013131 (2014)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    P. Langfield, B. Krauskopf, H.M. Osinga, J. Appl. Dyn. Syst. 14, 1418 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Mauroy, B. Rhoads, J. Moehlis, I. Mezic, J. Appl. Dyn. Syst. 13, 306 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Messias, J. Phys. A 42, 115101 (2009)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    H.M. Osinga, J. Moehlis, J. Appl. Dyn. Syst. 9, 1201 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    H.G. Othmer, Math. Biosci. 24, 205 (1975)MathSciNetCrossRefGoogle Scholar
  14. 14.
    K.M. Shaw, Y.-M. Park, H.J. Chiel, P.J. Thomas, J. Appl. Dyn. Syst. 11, 350 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    W.E. Sherwood, J. Guckenheimer, J. Appl. Dyn. Syst. 9, 659 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Uppal, W.H. Ray, A.B. Poore, Chem. Eng. Sci. 29, 967 (1974)CrossRefGoogle Scholar
  17. 17.
    A.T. Winfree, J. Math. Biol. 1, 73 (1974)MathSciNetCrossRefGoogle Scholar
  18. 18.
    A.T. Winfree, The Geometry of Biological Time (Springer-Verlag, 1980)Google Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  1. 1.Department of MathematicsThe University of AucklandAuckland 1142New Zealand

Personalised recommendations