Advertisement

The European Physical Journal Special Topics

, Volume 225, Issue 11–12, pp 2241–2254 | Cite as

Nanomotors

  • Mariana Alarcón-Correa
  • Debora Walker
  • Tian Qiu
  • Peer FischerEmail author
Open Access
Review Artificial Microswimmers
Part of the following topical collections:
  1. Microswimmers – From Single Particle Motion to Collective Behaviour

Abstract

This minireview discusses whether catalytically active macromolecules and abiotic nanocolloids, that are smaller than motile bacteria, can self-propel. Kinematic reversibility at low Reynolds number demands that self-propelling colloids must break symmetry. Methods that permit the synthesis and fabrication of Janus nanocolloids are therefore briefly surveyed, as well as means that permit the analysis of the nanocolloids’ motion. Finally, recent work is reviewed which shows that nanoagents are small enough to penetrate the complex inhomogeneous polymeric network of biological fluids and gels, which exhibit diverse rheological behaviors.

References

  1. 1.
    B. Dusenbery, Living at the Microscale (Harvard University Press, 2009)Google Scholar
  2. 2.
    R.D. Vale, R.A. Milligam, Science 288, 88 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    S. Sengupta, et al., J. Am. Chem. Soc. 135, 1406 (2013)CrossRefGoogle Scholar
  4. 4.
    C. Riedel, et al., Nature 517, 227 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    P.H. Colberg, S.Y. Reigh, B. Robertson, R. Kapral, Acc. Chem. Res. 47, 3504 (2014)CrossRefGoogle Scholar
  6. 6.
    M. Alarcon-Correa, P. Oswald, T. Qiu, D. Walker, P. Fischer, C5 Nanomotors, in Lecture Notes of the DFG SPP Summer School 2015, edited by G. Gompper et al., Schriften des Forschungszentrums Jülich, Key Technologies. 110 (Forschungszentrum Jülich, 2015)Google Scholar
  7. 7.
    H.P. Erickson, Biological Procedures Online 11, 32 (2009)CrossRefGoogle Scholar
  8. 8.
    T. Qiu, et al., Nat. Commun. 5, 5119 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    R. Roselli, K. Diller, Biotransport: Principles and Applications, Ch. 4 (Springer, 2011)Google Scholar
  10. 10.
    R.L. Whitmore, Rheology of the Circulation (Pergamon Press, 1968)Google Scholar
  11. 11.
    J. Pokki, et al., Conf. Proc. IEEE Eng. Med. Biol. Soc. 2813 (2012)Google Scholar
  12. 12.
    S. Suri, R. Banerjee, Trends Biomateri. Artif. Organs 20, 72 (2006)Google Scholar
  13. 13.
    T. Qiu, et al., IEEE Int. Conf. on Robotics and Automation (ICRA) 3801 (2014)Google Scholar
  14. 14.
    B.P. Conrad, Master Thesis, University of Florida (2001)Google Scholar
  15. 15.
    J. Kienlen, et al., Ann. Fran. Anesth. Reanimation 9, 495 (1990)CrossRefGoogle Scholar
  16. 16.
    D.C. Markesich, B.S. Anand, G.M. Lew, D.Y. Graham. Gut. 36, 327 (1995)CrossRefGoogle Scholar
  17. 17.
    B.J. Berne, R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics (Dover, 1976)Google Scholar
  18. 18.
    J. Rodriguez-Fernandez, et al., J. Phys. Chem. 111, 5020 (2007)Google Scholar
  19. 19.
    T.-C. Lee, et al., Nano Lett. 14, 2407 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    H. Chen, et al., Proc. Natl. Acad. Sci. 25, 10459 (2007)CrossRefGoogle Scholar
  21. 21.
    S. Hou, et al., Laser Phys. Lett. 11, 085602 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006)Google Scholar
  23. 23.
    R.G. Winkler, Eur. Phys. J. Special Topics this issue (2016)Google Scholar
  24. 24.
    C. Casagrande, M. Veyssie, C.R. Acad. Sci. (Paris) 306, 1423 (1988)Google Scholar
  25. 25.
    M. Popescu, W. Uspal, S. Dietrich, Eur. Phys. J. Special Topics 225, 2189 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    D.A. Christian, et al., Nat. Mater. 8, 843 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    X. Feng, et al., J. Am. Chem. Soc. 130, 11662 (2008)CrossRefGoogle Scholar
  28. 28.
    Y. Chang, et al, Macromolecules 38, 6201 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    D.A. Wilson, et al., Nat. Chem. 4, 268 (2012)CrossRefGoogle Scholar
  30. 30.
    A. Perro, et al., Colloids Surf. A 332, 57 (2009)CrossRefGoogle Scholar
  31. 31.
    J. Zhang, et al., Chem. Mater. 21, 4012 (2009)CrossRefGoogle Scholar
  32. 32.
    L. Nie, et al., Angew. Chem. Int. Ed. 46, 6321 (2007)CrossRefGoogle Scholar
  33. 33.
    L. Liu, et al., Langmuir 25, 11048 (2009)CrossRefGoogle Scholar
  34. 34.
    R. Glass, et al., Nanotechnology 14, 1153 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    S. Kruss, et al., Langmuir 28, 1562 (2012)CrossRefGoogle Scholar
  36. 36.
    X. Ma, K. Hahn, S. Sanchez, J. Am. Chem. Soc. 137, 4976 (2015)CrossRefGoogle Scholar
  37. 37.
    A.G. Mark, et al., Nat. Mater. 12, 802 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    T. Qiu, et al., Nature Commun. 5, 5119 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    M.K. Cowman, S. Matsuoka, Carbohydr. Res. 340, 791 (2005)CrossRefGoogle Scholar
  40. 40.
    A. Masuda, et al., J. Am. Chem. Soc. 123, 11468 (2001)CrossRefGoogle Scholar
  41. 41.
    S.C. De Smedt, et al., Macromolecules 27, 141 (1994)ADSCrossRefGoogle Scholar
  42. 42.
    D. Schamel, et al., ACS Nano 8, 8794 (2014)CrossRefGoogle Scholar
  43. 43.
    P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, 1979)Google Scholar
  44. 44.
    E. Lauga, Phys. Rev. Lett. 106, 178101 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    P. Mandal, A. Ghosh, Phys. Rev. Lett. 111, 248101 (2013)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Mariana Alarcón-Correa
    • 1
    • 2
  • Debora Walker
    • 1
    • 2
  • Tian Qiu
    • 1
  • Peer Fischer
    • 1
    • 2
    Email author
  1. 1.Max Planck Institute for Intelligent SystemsStuttgartGermany
  2. 2.Institute for Physical Chemistry, Univ. StuttgartStuttgartGermany

Personalised recommendations