The European Physical Journal Special Topics

, Volume 225, Issue 11–12, pp 2099–2117 | Cite as

The Physics of the Vicsek model

Open Access
Review Methods and Concepts
Part of the following topical collections:
  1. Microswimmers – From Single Particle Motion to Collective Behaviour

Abstract

In these lecture notes, prepared for the Microswimmers Summer School 2015 at Forschungszentrum Jülich, I discuss the well known Vicsek model for collective motion and its main properties. In particular, I discuss its algorithmic implementation and the basic properties of its universality class. I present results from numerical simulations and insist on the role played by symmetries and conservation laws. Analytical arguments are presented in an accessible and simplified way, but ample references are given for more advanced readings.

References

  1. 1.
    Animal Groups in Three Dimensions, edited by J.K. Parrish, W.M. Hamner (Cambridge University Press, Cambridge, U.K., 1997)Google Scholar
  2. 2.
    F. Ginelli, et al., Proc. Natl. Acad. Sci. USA 112, 12729 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    H.P. Zhang, et al., Proc. Natl. Acad. Sci. USA 107, 13626 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    X. Trepat, et al., Nature Phys. 5 426 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    V. Schaller, et al., Nature 467, 73 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Pliny, in Natural History, translated by H. Rackham (Harvard University Press, 1968), Vol. III, book 10, xxxii, p. 63Google Scholar
  7. 7.
    S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    J. Palacci, S. Sacanna, A. Preska Steinberg, D.J. Pine, P.M. Chaikin, Science 339, 936 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    V. Narayan, S. Ramaswamy, N. Menon, Science 317, 105 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    J. Desaigne, O. Dauchot, H. Chaté, Phys. Rev. Lett. 105, 098001 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    D. Forster, Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions, Frontiers in Physics 47, XIX, 326 (W.A. Benjamin, Inc, 1975)Google Scholar
  12. 12.
    T. Vicsek, et al., Phys. Rev. Lett. 75, 1226 (1995)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    G. Grégoire, H. Chaté, Phys. Rev. Lett. 92, 025702 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    H. Chaté, et al., Phys. Rev. E 77, 046113 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    R.G. Winkler, Eur. Phys. J. Special Topics 225, 2079 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    A. Peshkov, E. Bertin, F. Ginelli, H. Chaté, Eur. Phys. J. Special Topics 223, 1315 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    H. Chaté, F. Ginelli, G. Grégoire, Phys. Rev. Lett. 99, 229601 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    E. Bertin, M. Droz, G. Grégoire, Phys. Rev. E 74, 022101 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    E. Bertin, M. Droz, G. Grégoire, J. Phys. A 42, 445001 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    P. Kraikivski, R. Lipowsky, J. Kierfeld, Phys. Rev. Lett. 96, 258103 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    M. Abkenar, K. Marx, T. Auth, G. Gompper, Phys. Rev. E 88, 062314 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    F. Peruani, Eur. Phys. J. Special Topics 225, 3001 (2016)CrossRefGoogle Scholar
  23. 23.
    A.P. Solon, H. Chaté, J. Tailleur Phys. Rev. Lett. 114, 068101 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    J-B. Caussin et al., Phys. Rev. Lett. 112, 148102 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    F. Ginelli, H. Chaté, Phys. Rev. Lett. 105, 168103 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    M. Ballerini, et al., Proc. Natl. Acad. Sci. USA 105, 1232 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    J. Gautrais, et al., PLoS Comp. Bio., 8 e1002678 (2012)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Peshkov, et al., Phys. Rev. Lett. 109, 098101 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)ADSCrossRefGoogle Scholar
  30. 30.
    J.M. Kosterlitz, D. Thouless, J. Phys. C 6, 1181 (1973)ADSCrossRefGoogle Scholar
  31. 31.
    J. Toner, unpublished. I am deeply indebited to John Toner for having introduced me to this simple but illuminating argumentGoogle Scholar
  32. 32.
    J. Toner, Y. Tu, Phys. Rev. Lett. 75, 4326 (1995)ADSCrossRefGoogle Scholar
  33. 33.
    J. Toner, Y. Tu, Phys. Rev. E 58, 4828 (1998)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    J. Toner, Phys. Rev. E 86, 031918 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    J. Toner, Y. Tu, S. Ramaswamy, Ann. Phys. (Berlin) 318, 170 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    V.L. Pokrovskii, A.Z. Patashinskii, Fluctuation Theory of Phase Transitions, 2nd edn. (Pergamon, Oxford, 1979; Nauka, Moscow, 1982)Google Scholar
  37. 37.
    A. Cavagna, et al., Proc. Natl. Acad. Sci. USA 107, 11865 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    S. Ramaswamy, R.A. Simha, J. Toner, Europhys. Lett. 62, 196 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    C.W. Reynolds, Computer Graphics 21, 25 (1987)CrossRefGoogle Scholar
  40. 40.
    G. Grégoire, H. Chaté, Y. Tu, Physica D 181, 157 (2003)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    D.J.G. Pearce, et al., Proc. Natl. Acad. Sci. USA 111, 10422 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    F.D.C. Farrell, M.C. Marchetti, D. Marenduzzo, J. Tailleur, Phys. Rev. Lett. 108, 248101 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    F. Ginelli, F. Peruani, M. Baer, H. Chaté, Phys. Rev. Lett. 104, 184502 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    H. Chaté, F. Ginelli, R. Montagne, Phys. Rev. Lett. 96, 180602 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    J. Toner, Phys. Rev. Lett. 108, 088102 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    Y.-h. Tu, M. Ulm, J. Toner, Phys. Rev. Lett. 80, 4819 (1998)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.SUPA, Institute for Complex Systems and Mathematical Biology, King’s College, University of AberdeenAberdeen AB24 3UEUK

Personalised recommendations