The European Physical Journal Special Topics

, Volume 225, Issue 13–14, pp 2707–2715 | Cite as

Synchronization of unidirectionally delay-coupled chaotic oscillators with memory

  • Rider Jaimes-Reátegui
  • Victor P. Vera-Ávila
  • Ricardo Sevilla-Escoboza
  • Guillermo Huerta-Cuéllar
  • Carlos E. Castañeda-Hernández
  • Roger Chiu-Zarate
  • Alexander N. Pisarchik
Regular Article Synchronization, Control and Data Analysis
Part of the following topical collections:
  1. Temporal and Spatio-Temporal Dynamic Instabilities: Novel Computational and Experimental Approaches

Abstract

We study synchronization of two chaotic oscillators coupled with time delay in a master-slave configuration and with delayed positive feedback in the slave oscillator which acts as memory. The dynamics of the slave oscillator is analyzed with bifurcation diagrams of the peak value of the system variable with respect to the coupling and feedback strengths and two delay times. For small coupling, when the oscillators’ phases synchronize, memory can induce bistability and stabilize periodic orbits, whereas for stronger coupling it is not possible. The delayed feedback signal impairs synchronization, simultaneously enhancing coherence of the slave oscillator.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Ashwin, Nature 422, 384 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garca-Ojalvo, C.R. Mirasso, L. Pesquera, K.A. Shore, Nature 438, 343 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    A.N. Pisarchik, F.R. Ruiz-Oliveras, IEEE J. Quantum Electron. 46, 299a (2010)ADSCrossRefGoogle Scholar
  4. 4.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Science (Cambridge University Press, New York, 2001)Google Scholar
  5. 5.
    J.-P. Richard, Automatica 39, 1667 (2003)CrossRefGoogle Scholar
  6. 6.
    N. MacDonald, Biological Delay Systems (Cambridge University Press, New York, 1989)Google Scholar
  7. 7.
    L. Glass, M.C. Mackey, Science 197, 287 (1977)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Kuang, Delay Differential Equations with Applications in Population Dynamics (Academic Press Limited, London, 1993)Google Scholar
  9. 9.
    A. Beuter, J. Bélair, C. Labrie, J. Bélair, Bull. Math. Biol. 55, 525 (1993)Google Scholar
  10. 10.
    G. Stépán, Philos. Trans. Math. Phys. Eng. Sci. 39, 739 (2001)CrossRefGoogle Scholar
  11. 11.
    H.Y. Hu, Dynamics of Controlled Mechanical Systems with Delayed Feedback (Springer, New York, 2002)Google Scholar
  12. 12.
    W. Michiels, S.-I. Niculescu, Stability, Control, and Computation for Time-Delay Systems: An Eigenvalue-Based Approach (SIAM, 2014)Google Scholar
  13. 13.
    R. Sipahi, T. Vyhldal, S.-I. Niculescu, P. Pierdomenico, Time Delay Systems: Methods, Applications and New Trends (Springer, Berlin, 2012)Google Scholar
  14. 14.
    H.U. Voss, Phys. Rev. E 61, 5115 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    A. Koseska, E. Volkov, J. Kurths, Phys. Rep. 531, 173 (2014)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    J.M. Sausedo-Solorio, A.N. Pisarchik, Phys. Lett. A 378, 2108 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    H. Fotsin, S. Bowong, J. Daafouz, Chaos Solitons and Fractals 26, 215 (2005)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    A.N. Pisarchik, R. Jaimes-Retegui, Phys. Lett. A 338, 141 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    A.N. Pisarchik, U. Feudel, Phys. Rep. 540, 167 (2014)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • Rider Jaimes-Reátegui
    • 1
  • Victor P. Vera-Ávila
    • 1
  • Ricardo Sevilla-Escoboza
    • 1
  • Guillermo Huerta-Cuéllar
    • 1
  • Carlos E. Castañeda-Hernández
    • 1
  • Roger Chiu-Zarate
    • 1
  • Alexander N. Pisarchik
    • 2
    • 3
  1. 1.Centro Universitario de Los Lagos, Universidad de Guadalajara, Enrique Díaz de LeónJaliscoMéxico
  2. 2.Center for Biomedical Technology, Technical University of Madrid, Campus Montegancedo, Pozuelo de AlarcónMadridSpain
  3. 3.Centro de Investigaciones en ÓpticaGuanajuatoMéxico

Personalised recommendations