Advertisement

The European Physical Journal Special Topics

, Volume 225, Issue 10, pp 2033–2045 | Cite as

Interests diffusion on a semantic multiplex

Comparing Computer Science and American Physical Society communities
  • Gregorio D’AgostinoEmail author
  • Antonio De Nicola
Regular Article Computational Social Science
Part of the following topical collections:
  1. Complex, Inter-networked Economic and Social Systems

Abstract

Exploiting the information about members of a Social Network (SN) represents one of the most attractive and dwelling subjects for both academic and applied scientists. The community of Complexity Science and especially those researchers working on multiplex social systems are devoting increasing efforts to outline general laws, models, and theories, to the purpose of predicting emergent phenomena in SN’s (e.g. success of a product). On the other side the semantic web community aims at engineering a new generation of advanced services tailored to specific people needs. This implies defining constructs, models and methods for handling the semantic layer of SNs. We combined models and techniques from both the former fields to provide a hybrid approach to understand a basic (yet complex) phenomenon: the propagation of individual interests along the social networks. Since information may move along different social networks, one should take into account a multiplex structure. Therefore we introduced the notion of “Semantic Multiplex”. In this paper we analyse two different semantic social networks represented by authors publishing in the Computer Science and those in the American Physical Society Journals. The comparison allows to outline common and specific features.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Amblard, A. Casteigts, P. Flocchini, W. Quattrociocchi, N. Santoro, 2011 International Conference on Computational Aspects of Social Networks (CASoN) (IEEE, 2011), p. 169Google Scholar
  2. 2.
    S. Boccaletti, G. Bianconi, R. Criado, C.I. Del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendina-Nadal, Z. Wang, M. Zanin, Phys. Rep. 544, 1 (2014)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    A. Burton-Jones, V.C. Storey, V. Sugumaran, P. Ahluwalia, Data & Knowledge Engineering 55, 84 (2005)CrossRefGoogle Scholar
  4. 4.
    G. D’Agostino, A. De Nicola, in OTM 2015 Workshops, edited by I. Ciuciu et al., Lecture Notes in Computer Science (Springer, Cham, 2015), Vol. 9416, p. 536Google Scholar
  5. 5.
    G. D’Agostino, F. D’Antonio, A. De Nicola, S. Tucci, Physica A: Stat. Mech. Appl. 436, 443 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    P. Deville, D. Wang, R. Sinatra, C. Song, V.D. Blondel, A.-L. Barabási, Sci. Rep. 4, (2014)Google Scholar
  7. 7.
    E. Elmacioglu, D. Lee, SIGMOD Rec. 34, 33 (2005)CrossRefGoogle Scholar
  8. 8.
    A.A. Ferreira, M.A. Gonçalves, A.H. Laender, ACM Sigmod Rec. 41, 15 (2012)CrossRefGoogle Scholar
  9. 9.
    S. Gomez, A. Diaz-Guilera, J. Gomez-Gardeñes, C.J. Perez-Vicente, Y. Moreno, A. Arenas, Phys. Rev. Lett. 110, 028701 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    C. Granell, S. Gómez, A. Arenas, Phys. Rev. Lett. 111, 128701 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    J. Han, Y. Sun, X. Yan, P.S. Yu, Proc. 2010 ACM SIGMOD Int. Conf. on Management of Data, SIGMOD ’10 (ACM, New York, NY, USA, 2010), p. 1251Google Scholar
  12. 12.
    M. Kudělka, Z. Horák, V. Snášel, P. Krömer, J. Platoš, A. Abraham, Logic J. IGPL 20, 634 (2012)CrossRefGoogle Scholar
  13. 13.
    R. Kumar, J. Novak, A. Tomkins, Proc. 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD ’06 (ACM, New York, NY, USA, 2006), p. 611Google Scholar
  14. 14.
    A. Lancichinetti, M.I. Sirer, J.X. Wang, D. Acuna, K. Körding, L.A.N. Amaral, A High-reproducibility and High-accuracy Method for Automated Topic Classification, [arXiv:1402.0422] (2014)
  15. 15.
    S.E. Middleton, N.R. Shadbolt, D.C. De Roure, ACM Transactions on Information Systems (TOIS) 22, 54 (2004)CrossRefGoogle Scholar
  16. 16.
    S. Milojević, J. Informetrics 7, 767 (2013)CrossRefGoogle Scholar
  17. 17.
    P.J. Mucha, T. Richardson, K. Macon, M.A. Porter, J.-P. Onnela, Science 328, 876 (2010)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    R. Navigli, P. Velardi, Computional Linguistics 30, 151 (2004)CrossRefGoogle Scholar
  19. 19.
    P. Nyczka, K. Sznajd-Weron, J. Stat. Phys. 151, 174 (2013)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A.M. Petersen, O. Penner, EPJ Data Sci. 3, 24 (2014)CrossRefGoogle Scholar
  21. 21.
    A.M. Petersen, S. Fortunato, R.K. Pan, K. Kaski, O. Penner, A. Rungi, M. Riccaboni, H.E. Stanley, F. Pammolli, Proc. Natl. Acad. Sci. 111, 15316 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    E. Pronin, J. Berger, S. Molouki, J. Personality and Social Psychology 92, 585 (2007)CrossRefGoogle Scholar
  23. 23.
    C. Schulz, A. Mazloumian, A.M. Petersen, O. Penner, D. Helbing, EPJ Data Sci. 3, 11 (2014)CrossRefGoogle Scholar
  24. 24.
    F. Sclano, P. Velardi, in Enterprise Interoperability II (Springer, London, 2007), p. 287Google Scholar
  25. 25.
    A. Sheth, D. Avant, C. Bertram, System and method for creating a semantic web and its applications in browsing, searching, profiling, personalization and advertising (Google Patents, 2001) US Patent 6,311,194Google Scholar
  26. 26.
    C. Staudt, A. Schumm, H. Meyerhenke, R. Gorke, D. Wagner, Proc. 2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012) ASONAM ’12 (IEEE Computer Society, Washington, DC, USA, 2012), p. 522Google Scholar
  27. 27.
    G. Tutoky, J. Paralič, in Aspects of Computational Intelligence: Theory and Applications, edited by L. Madarász, J. Zivck, Topics in Intelligent Engineering and Informatics (Springer, Berlin, Heidelberg, 2013), Vol. 2, p. 207Google Scholar
  28. 28.
    D. Wang, C. Song, A.-L. Barabási, Science 342, 127 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    P. Wang, J. Zhao, K. Huang, B. Xu, A Unified Semi-supervised Framework for Author Disambiguation in Academic Social Network, in Database and Expert Systems Applications (Springer, 2014), p. 1Google Scholar
  30. 30.
    Wikipedia, Chinese given name – Wikipedia, The Free Encyclopedia, 2014a [Online; accessed 18-December-2014]. http://tinyurl.com/nb5t2ap
  31. 31.
    Wikipedia, List of common Chinese surnames – Wikipedia, The Free Encyclopedia, 2014b. [Online; accessed 18-December-2014]. http://tinyurl.com/g2uyc
  32. 32.
    R.H. Willis, Human Relations 18, 373 (1965)MathSciNetCrossRefGoogle Scholar
  33. 33.
    H. Zhu, X. Wang, J.-Y. Zhu, Phys. Rev. E 68, 056121 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  1. 1.ENEA, “Casaccia” Research CentreRomaItaly

Personalised recommendations