The European Physical Journal Special Topics

, Volume 225, Issue 6–7, pp 1149–1164 | Cite as

Multi-chimera states and transitions in the Leaky Integrate-and-Fire model with nonlocal and hierarchical connectivity

  • N.D. Tsigkri-DeSmedt
  • J. Hizanidis
  • P. Hövel
  • A. ProvataEmail author
Regular Article Session B: Papers I
Part of the following topical collections:
  1. Mathematical Modeling of Complex Systems


The effects of nonlocal and fractal connectivity are investigated in a network of Leaky Integrate-and-Fire (LIF) elements. The idea of fractal coupling originates from the hierarchical topology of networks formed by neuronal axons, which transmit the electrical signals in the brain. If a number of LIF elements with finite refractory period are nonlocally coupled, multi-chimera states emerge whose multiplicity depends both on the coupling strength and on the refractory period. We provide evidence that the introduction of a hierarchical topology in the coupling induces novel complex spatial and temporal structures, such as nested chimera states and transitions between multi-chimera states with different multiplicities. These results demonstrate new complex patterns, as well as transitions between different multi-chimera states arising from the combination of nonlinear dynamics with the hierarchical coupling.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Pikovsky, M.G. Rosenblum, J. Kurths, Synchronization, A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001)Google Scholar
  2. 2.
    V.S. Anishchenko, V. Astakhov, A. Neiman, T. Vadivasova, L. Schimansky-Geier, Nonlinear Dynamics of Chaotic and Stochastic Systems (Springer-Verlang, Berlin, 2007)Google Scholar
  3. 3.
    V. Vuksanović, P. Hövel, NeuroImage 97, 1 (2014)CrossRefGoogle Scholar
  4. 4.
    V. Vuksanović, P. Hövel, Chaos 25, 023116 (2015)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    J. Ladenbauer, J. Lehnert, H. Rankoohi, T. Dahms, E. Schöll, K. Obermayer, Phys. Rev. E 88, 042713 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Kuramoto, D. Battogtokh, Nonlinear Phenom. Complex Syst. 5, 380 (2002)Google Scholar
  7. 7.
    D.M. Abrams, S.H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    M.J. Panaggio, D.M. Abrams, Nonlinearity 28, R67 (2015)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    D.M. Abrams, S.H. Strogatz, Int. J. Bifurcation Chaos 16, 21 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    D.M. Abrams, R.R. Mirollo, S.H. Strogatz, D.A. Wiley, Phys. Rev. E 101, 084103 (2008)Google Scholar
  11. 11.
    I. Omelchenko, O. Omel’chenko, P. Hövel, E. Schöll, Phys. Rev. Lett. 110, 224101 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    J. Hizanidis, V. Kanas, A.A. Bezerianos, T. Bountis, Int. J. Bifurcation Chaos 24, 1450030 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Vüllings, J. Hizanidis, I. Omelchenko, P. Hövel, J. Phys. 16, 123039 (2014)Google Scholar
  14. 14.
    I. Omelchenko, A. Provata, J. Hizanidis, E. Schöll, P. Hövel, Phys. Rev. E 91, 022917 (2015)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    N.D. Tsigkri-DeSmedt, J. Hizanidis, P. Hövel, A. Provata, Procedia Computer Sci. 66, 13 (2015)CrossRefGoogle Scholar
  16. 16.
    I. Schneider, M. Kapeller, S. Loos, A. Zakharova, B. Fiedler, E. Schöll, Phys. Rev. E 92, 052915 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    S.A.M. Loos, J.C. Claussen, E. Schöll, A. Zakharova, Phys. Rev. E 93, 012209 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    M.R. Tinsley, K. Showalter, Nat. Phys. 8, 662 (2012)CrossRefGoogle Scholar
  19. 19.
    A.M. Hagerstrom, T.E. Murphy, R. Roy, P. Hövel, I. Omelchenko, E. Schöll, Nat. Phys. 8, 658 (2012)CrossRefGoogle Scholar
  20. 20.
    M. Wickramasinghe, I.Z. Kiss, PLoS ONE 8, e80586 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    L. Larger, B. Penkovsky, Y. Maistrenko, Phys. Rev. Lett. 111, 054103 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    E.A. Martens, S. Thutupalli, A. Fourrière, O. Hallatschek, Proc. Nat. Acad. Sci. 110, 10563 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    N. Brunel, M.C.W. Van Rossum, Biol. Cybern. 97, 337 (2007)CrossRefGoogle Scholar
  24. 24.
    N. Kouvaris, F. Müller, L. Schimansky-Geier, Phys. Rev. E 82, 061124 (2010)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    S. Lucioli, A. Politi, Phys. Rev. E 105, 158104 (2010)Google Scholar
  26. 26.
    Q. Wang, G. Chen, M. Perc, PloS ONE 6, e15851 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    M. Nandan, C.R. Hens, P. Pal, S.K. Dana, Chaos 24, 043103 (2014)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    L. Tattini, S. Olmi, A. Torcini, Chaos 22, 023133 (2012)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    M. Zare, P. Grigolini, Phys. Rev. E 86, 051918 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    S. Olmi, A. Politi, A. Torcini, Europhys. Lett. 92, 60007 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    D.P. Rosin, D. Rontani, D. J. Gauthier, E. Schöll, Phys. Rev. Lett. 110, 104102 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    I. Omelchenko, Y. Maistrenko, P. Hövel, E. Schöll, Phys. Rev. Lett. 106, 234102 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    J. Hizanidis, E. Panagakou, E. Schöll, P. Hövel, A. Provata, Phys. Rev. E 92, 012915 (2015)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    P. Katsaloulis, D.A. Verganelakis, A. Provata, Fractals 17, 181 (2009)CrossRefGoogle Scholar
  35. 35.
    P. Katsaloulis, A. Ghosh, A.C. Philippe, A. Provata, R. Deriche, EPJ B 85, 150 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    P. Expert, R. Lambiotte, D. Chialvo, K. Christensen, H.J. Jensen, D.J. Sharp, F. Turkheimer, J. R. Soc. Interface 8, 472 (2011)CrossRefGoogle Scholar
  37. 37.
    P. Katsaloulis, J. Hizanidis, D.A. Verganelakis, A. Provata, Fluct. Noise Lett. 11, 1250032 (2012)CrossRefGoogle Scholar
  38. 38.
    J. Feder, Fractals (Plenum Press, New York, 1988)Google Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • N.D. Tsigkri-DeSmedt
    • 1
    • 2
  • J. Hizanidis
    • 1
    • 3
  • P. Hövel
    • 4
    • 5
  • A. Provata
    • 1
    Email author
  1. 1.Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”AthensGreece
  2. 2.Department of Solid State PhysicsDepartment of Physics, University of AthensAthensGreece
  3. 3.Crete Center for Quantum Complexity and Nanotechnology, Department of Physics, University of CreteHeraklionGreece
  4. 4.Institut für Theoretische Physik, Technische Universität BerlinBerlinGermany
  5. 5.Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu BerlinBerlinGermany

Personalised recommendations