The European Physical Journal Special Topics

, Volume 225, Issue 2, pp 335–341 | Cite as

Shock compression of [001] single crystal silicon

  • S. Zhao
  • E.N. Hahn
  • B. Kad
  • B.A. Remington
  • E.M. Bringa
  • M.A. MeyersEmail author
Regular Article
Part of the following topical collections:
  1. Dynamic Behaviour of Materials at High Strain Rates: Experiment, Modelling and Simulation


Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.


European Physical Journal Special Topic Shock Compression Shock Surface Transmitted Shock Wave Clapeyron Slope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.V. Al’tshuler, Sov Phys. Uspekhi 8, 52 (1965)ADSCrossRefGoogle Scholar
  2. 2.
    A. Loveridge-Smith, A. Allen, J. Belak, T. Boehly, A. Hauer, B. Holian, D. Kalantar, G. Kyrala, R.W. Lee, P. Lomdahl, M.A. Meyers, D. Paisley, S. Pollaine, B. Remington, D.C. Swift, S. Weber, J.S. Wark, Phys. Rev. Lett. 86, 2349 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    H. Kishimura, H. Matsumoto, J. Appl. Phys. 103, 023505 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    R.F. Smith, C.A. Bolme, D.J. Erskine, P.M. Celliers, S. Ali, J.H. Eggert, S.L. Brygoo, B.D. Hammel, J. Wang, G.W. Collins, J. Appl. Phys. 114, 133504 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    N.S. Enikolopyan, A.A. Zharov, V.A. Zhorin, A.G. Kazakevich, P.A. Yampolski, J. Appl. Mech. Tech. Phys. 15, 116 (1974)ADSCrossRefGoogle Scholar
  6. 6.
    S.M. Walley, J.E. Balzer, W.G. Pround, J.E. Field, Proc. R. Soc. Lond. A. 456, 1483 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    M.N. Pavlovskii, Sov. Phys. Solid State. 9, 2514 (1967)Google Scholar
  8. 8.
    W.H. Gust, E.B. Royce, J. Appl. Phys. 42, 1897 (1971)ADSCrossRefGoogle Scholar
  9. 9.
    T. Goto, T. Sato, Y. Syono, Jpn J. Appl. Phys. Lett. 21, 369 (1982)ADSCrossRefGoogle Scholar
  10. 10.
    J.S. Wark, R.R. Whitlock, A. Haner, J.E. Swain, P.J. Solone, Phys. Rev. B. 35, 9391 (1987)ADSCrossRefGoogle Scholar
  11. 11.
    J. Ren, S.S. Orlov, L. Hesselink, J. Appl. Phys. 97, 104304 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    G.J. Cheng, M.A. Shehadeh, Int. J. Plast. 22, 2171 (2006)CrossRefGoogle Scholar
  13. 13.
    G.J. Cheng, M.A. Shehadeh, Scr. Mater. 53, 1013 (2005)CrossRefGoogle Scholar
  14. 14.
    G. Mogni, A. Higginbotham, K. Gaál-Nagy, N. Park, J.S. Wark, Phys. Rev. B. 89, 064104 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    S. Zhao, B. Kad, E.N. Hahn, B.A. Remington, C.E. Wehrenburg, C.M. Huntington, H.S. Park, E.M. Bringa, K. More, M.A. Meyers, Extreme Mech. Lett. 5, 74 (2015)CrossRefGoogle Scholar
  16. 16.
    F.H. Stillinger, T.A. Weber, Phys. Rev. B. 31, 5262 (1985)ADSCrossRefGoogle Scholar
  17. 17.
    J. Tersoff, Phys. Rev. B., 38 9902Google Scholar
  18. 18.
    P. Erhart, K. Albe, Phys. Rev. B. 71, 035211 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    T. Kumagai, S. Izumi, S. Hara, S. Sakai, Comput. Mater. Sci. 39, 457 (2007)CrossRefGoogle Scholar
  20. 20.
    P.K. Schelling, Comput. Mater. Sci. 44, 274 (2008)CrossRefGoogle Scholar
  21. 21.
    V.S. Dozhdikov, A.Y. Basharin, P.R. Levashov, J. Chem. Phys. 137, 054502 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    E.M. Bringa, K. Rosolankova, R.E. Rudd, B.A. Remington, J.S. Wark, M. Duchaineau, Nat. Mater. 5, 805Google Scholar
  25. 25.
    L.M. Hale, D.B. Zhang, X. Zhou, J.A. Zimmerman, N.R. Moody, T. Dumitrica, R. Ballarini, W.W. Gerberich 54, 280 (2012)Google Scholar
  26. 26.
    S.K. Deb, M. Wilding, M. Somayazulu, P.F. McMillan, Nature 414, 528 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    P.W. Bridgman, Phys. Rev. 48, 825 (1935)ADSCrossRefGoogle Scholar
  28. 28.
    H.C. Chen, J.C. Lasalvia, V.F. Nesterenko, M.A. Meyers, Acta Mater. 46, 3033 (1998)CrossRefGoogle Scholar
  29. 29.
    E. Teller, J. Chem. Phys. 36, 901 (1962)ADSCrossRefGoogle Scholar
  30. 30.
    G. Duvall, R. Graham, Rev. Mod. Phys. 49, 523 (1977)ADSCrossRefGoogle Scholar
  31. 31.
    M.A. Meyers, Dyn. Behav. Mater. (John Wiley & Sons, 1994)Google Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • S. Zhao
    • 1
  • E.N. Hahn
    • 1
  • B. Kad
    • 1
  • B.A. Remington
    • 2
  • E.M. Bringa
    • 3
    • 4
  • M.A. Meyers
    • 1
    Email author
  1. 1.University of California San DiegoLa JollaUSA
  2. 2.Lawrence Livermore National LaboratoryLivermoreUSA
  3. 3.Universidad Nacional de CuyoMendozaArgentina
  4. 4.CONICETMendozaArgentina

Personalised recommendations