The European Physical Journal Special Topics

, Volume 225, Issue 2, pp 265–282 | Cite as

Analysis of concrete targets with different kinds of reinforcements subjected to blast loading

  • M. Oña
  • G. Morales-Alonso
  • F. Gálvez
  • V. Sánchez-Gálvez
  • D. CendónEmail author
Regular Article
Part of the following topical collections:
  1. Dynamic Behaviour of Materials at High Strain Rates: Experiment, Modelling and Simulation


In this paper we describe an experimental campaign carried out to study and analyse the behaviour of concrete slabs when subjected to blast loading. Four different types of concrete have been tested: normal strength concrete with steel rebar, normal strength concrete with steel rebar retrofitted with Kevlar coating, steel fibre reinforced concrete (SFRC) and polypropylene fibre reinforced concrete (PFRC). The major asset of the experimental setup used is that it allows to subject up to four specimens to the same blast load what, besides being cost effective, makes possible to have a measure of the experimental scatter. The results of SFRC and PFRC concretes have been analysed by using a previously developed material model for the numerical simulation of concrete elements subjected to blast. The experimental campaign and preliminary results of this numerical analysis show how the high strain rates, in spite of improving the mechanical properties of these kinds of fibre reinforced concretes, lead to an embrittlement of the material, which may be dangerous from the point of view of the structural behaviour.


Fracture Energy High Strain Rate European Physical Journal Special Topic Concrete Slab Softening Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.O. Dusenberry, Handbook for Blast Resistant Design of Buildings (NJ: John Willey & Sons Inc., 2010)Google Scholar
  2. 2.
    L.J. Malvar, J.E. Crawford, Dynamic Increase Factors for Concrete, 28th DDESB Seminar (Orlando, FL, 1998)Google Scholar
  3. 3.
    J. Magnusson, M. Hallgren, A. Ansell, Mag. Concrete Res. 62, 127 (2010)CrossRefGoogle Scholar
  4. 4.
    G. Morales-Alonso, Experimental and Numerical Analysis of Reinforced Concrete Elements Subjected to Blast Loading, Ph.D. Thesis, Universidad Politécnica de Madrid, 2013, p. 224Google Scholar
  5. 5.
    J.E. Crawford, L.J. Malvar, Retrofit of structural components and systems, Blast Resistant Design of Buildings (Chap. 17), edited by D.O. Dusemberry (2010)Google Scholar
  6. 6.
    B. Ellingwood, Special Issue J. Perform. Constr. Facil. 20, 315 (2006)CrossRefGoogle Scholar
  7. 7.
    C. Pearson, N. Dellate, J. Perform. Constr. Facil. 19(2), 172 (2005)CrossRefGoogle Scholar
  8. 8.
    L. Mao, S. Barnett, D. Begg, G. Schleyer, G. Wight, Int. J. Impact Eng. 64, 91 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Astarlioglu, T. Krauthammer, Eng. Struct. 61, 1 (2014)CrossRefGoogle Scholar
  10. 10.
    C.P. Pantelides, T.T. Garfield, W.D. Richins, T.K. Larson, J.E. Blakeley, Eng. Struct. 76, 24 (2014)CrossRefGoogle Scholar
  11. 11.
    G. Morales-Alonso, D.A. Cendón, F. Gálvez, B. Erice, V. Sánchez-Gálvez, J. Appl. Mech. 78(5), 10.1115 (2011)Google Scholar
  12. 12.
    G. Morales-Alonso, D.A. Cendón, F. Gálvez, V. Sánchez-Gálvez, Fracture of Concrete Structural Members Subjected to Blast, 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Spain (FraMCoS 8) (2013)Google Scholar
  13. 13.
    J.M. Sancho, J. Planas, D.A. Cendón, J.C. Reyes, J.C. Gálvez, D.A. Cendón, Int. J. Numer. Anal. Meth. Geomech. 31, 173 (2007b)CrossRefGoogle Scholar
  14. 14.
    J.M. Sancho, J. Planas, A.M. Fathy, J.C. Gálvez, J. Eng. Fract. Mech. 74, 75 (2007a)CrossRefGoogle Scholar
  15. 15.
    A. Hillerborg, M. Modeer, P. Petersson, Cem. And Concr. Res. 6, 773 (1976)CrossRefGoogle Scholar
  16. 16.
    J. Planas, M. Elices, G.V. Guinea, F.J. Gómez, D.A. Cendón, I. Arbilla, Eng. Fract. Mech. 70, 1759 (2003)CrossRefGoogle Scholar
  17. 17.
    J. Oliver, Int. J. Numer. Methods Eng. 39, 3575 (1996)CrossRefGoogle Scholar
  18. 18.
    M. Jirásek, Comput. Methods Appl. Mech. Eng. 188, 307 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    G.F. Kinney, K.J. Graham, Explosive shocks in air, 2nd ed. (Springer-Verlag, New York, 1985)Google Scholar
  20. 20.
    C.A. Ross, J.W. Tedesco, S.T. Kuennen, ACI Mater. J. 92, 37 (1995)Google Scholar
  21. 21.
    Comité Euro-International du Béton, Bulletin d’ Information 187. Concr. struct. under impact and impulsive loading (CEB, Dubrovnik, 1988)Google Scholar
  22. 22.
    Comité Euro-International du Béton, Model Code 2010, FIB (2012)Google Scholar
  23. 23.
    J. Weerheijm, Van Doormaal, Int. J. Impact Eng. 34, 609 (2007)CrossRefGoogle Scholar
  24. 24.
    D.L. Birkimer, R. Lindeman. Suplement to Title 68-8. ACI Journal (1971)Google Scholar
  25. 25.
    A.J. Zielinski, H.W. Reinhardt, Cem. Concr. Res. 12(3), 309 (1982)CrossRefGoogle Scholar
  26. 26.
    A. Brara, J.R. Klepaczko, Int. J. Impact Eng. 34, 424 (2007)CrossRefGoogle Scholar
  27. 27.
    H. Schuler, C. Mayrhofer, K. Thoma, Int. J. Impact Eng. 32, 1635 (2006)CrossRefGoogle Scholar
  28. 28.
    J.C.A.M. Van Dormal, J. Weerheijm, L.G. Sluys. J. Phys. IV. (France) (1994)Google Scholar
  29. 29.
    F. Toutlemonde, P. Rossi, C. Boulay, C. Gourraud, D. Guedeon, Mats. Struct. 28, 293 (1995)CrossRefGoogle Scholar
  30. 30.
    S.G. Millard, Int. J. Imp. Eng. 37(4), 405 (2009)CrossRefGoogle Scholar
  31. 31.
    P.E. Petersson, Crack growth and Developement of Fracture Zones in PlainConcrete and Similar Materials, Report No. TVBM-1006, Lund Inst. of Tech. (1981)Google Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • M. Oña
    • 1
  • G. Morales-Alonso
    • 1
  • F. Gálvez
    • 1
  • V. Sánchez-Gálvez
    • 1
  • D. Cendón
    • 1
    Email author
  1. 1.UPM, Material Science Dept.MadridSpain

Personalised recommendations