Advertisement

The European Physical Journal Special Topics

, Volume 225, Issue 1, pp 127–136 | Cite as

A novel memristive time–delay chaotic system without equilibrium points

  • V.-T. PhamEmail author
  • S. Vaidyanathan
  • C.K. Volos
  • S. Jafari
  • N.V. Kuznetsov
  • T.M. Hoang
Regular Article Dynamics and Synchronization: Experiments
Part of the following topical collections:
  1. Synchronization and Control in Time-Delayed Complex Networks and Spatio-Temporal Patterns

Abstract

Memristor and time–delay are potential candidates for constructing new systems with complex dynamics and special features. A novel time–delay system with a presence of memristive device is proposed in this work. It is worth noting that this memristive time–delay system can generate chaotic attractors although it possesses no equilibrium points. In addition, a circuitry implementation of such time–delay system has been introduced to show its feasibility.

Keywords

Equilibrium Point Chaotic System European Physical Journal Special Topic Chaotic Attractor Delay System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.M. Pecora, T.L. Carroll, Phys. Rev. A 64, 821 (1990)ADSMathSciNetGoogle Scholar
  2. 2.
    S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C.S. Zhou, Phys. Rep. 366, 1 (2002)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    S.H. Strogatz, Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering (Perseus Books, Massachusetts, 1994)Google Scholar
  4. 4.
    S. Banerjee, J. Kurths, Eur. Phys. J. Special Topics 223, 1441 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    E.N. Lorenz, J. Atmospheric Science 20, 130 (1963)ADSCrossRefGoogle Scholar
  6. 6.
    O.E. Rössler, Phys. Lett. A 57, 397 (1976)ADSCrossRefGoogle Scholar
  7. 7.
    J.C. Sprott, Phys. Rev. E 50, R647 (1994)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    J.C. Sprott, Elegant chaos: algebraically simple chaotic flows (World Scientific, Singapore, 2010)Google Scholar
  9. 9.
    S. Vaidyanathan, Eur. Phys. J. Special Topics 223, 1519 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    G.A. Leonov, N.V. Kuznetsov, O.A. Kuznetsova, S.M. Seldedzhi, V.I. Vagaitsev, Trans. Syst. Contr. 6, 54 (2011)Google Scholar
  11. 11.
    G.A. Leonov, N.V. Kuznetsov, V.I. Vagaitsev, Physica D 241, 1482 (2012)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    G.A. Leonov, N.V. Kuznetsov, Int. J. Bif. Chaos 23, 1330002 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    X. Wang, G. Chen, Commun. Nonlinear Sci. Numer. Simul. 17, 1264 (2012)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Molaie, S. Jafari, J.C. Sprott, S. Golpayegani, Int. J. Bif. Chaos 23, 1350188 (2013)CrossRefGoogle Scholar
  15. 15.
    S.T. Kingni, S. Jafari, H. Simo, P. Woafo, Eur. Phys. J. Plus 129, 76 (2014)CrossRefGoogle Scholar
  16. 16.
    S. Jafari, J.C. Sprott, Chaos, Solitons Fractals 57, 79 (2013)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Z. Wei, Phys. Lett. A 376, 102 (2011)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    S. Jafari, J.C. Sprott, S.M.R.H. Golpayegani, Phys. Lett. A 377, 699 (2013)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    G.A. Leonov, N.V. Kuznetsov, Dokl. Math. 84, 475 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    G.A. Leonov, N.V. Kuznetsov, V.I. Vagaitsev, Phys. Lett. A 375, 2230 (2011)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    G.A. Leonov, N.V. Kuznetsov, M.A. Kiseleva, E.P. Solovyeva, A.M. Zaretskiy, Nonlinear Dyn. 77, 277 (2014)CrossRefGoogle Scholar
  22. 22.
    G.A. Leonov, N.V. Kuznetsov, T.N. Mokaev, Commun. Nonlinear Sci. Numer. Simul. 28, 166 (2015)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    K. Ikeda, H. Daido, O. Akimoto, Phys. Rev. Lett. 45, 709 (1980)ADSCrossRefGoogle Scholar
  24. 24.
    K. Ikeda, K. Matsumoto, Physica D 29, 223 (1987)ADSCrossRefGoogle Scholar
  25. 25.
    X. Liao, S. Guo, C. Li, Nonlinear Dyn. 49, 319 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Y. Xia, M. Fu, P. Shi, Analysis and synthesis of dynamical systems with time–delays (Springer, New York, 2009)Google Scholar
  27. 27.
    L. Pei, Q. Wang, H. Shi, Nonlinear Dyn. 63, 417 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    P. Yongzhen, L. Shuping, L. Changguo, Nonlinear Dyn. 63, 311 (2011)MathSciNetCrossRefGoogle Scholar
  29. 29.
    T. Nagatani, Physica A 348, 561 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    M. Peil, M. Jacquot, Y. Chembo, L. Larger, T. Erneux, Phys. Rev. E 79, 026208 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    L.A. Safonov, E. Tomer, V. Strygin, Y. Ashkenazy, S. Havlin, Chaos 12, 1006 (2002)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    X. Wang, H. Yu, S. Zhong, R. Agarwal, Appl. Math. Model. 34, 3850 (2010)MathSciNetCrossRefGoogle Scholar
  33. 33.
    H. Lu, Z. He, IEEE Trans. Circuits Sys. I: Fundam. Theory Appl. 43, 700 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    H.U. Voss, Int. J. Bif. Chaos 12, 1619 (2002)CrossRefGoogle Scholar
  35. 35.
    A. Ucar, Chaos Solitions Fractals 16, 187 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    L. Wang, X. Yang, Electron. Lett. 42, 1439 (2006)CrossRefGoogle Scholar
  37. 37.
    A. Tamasevicius, T. Pyragine, M. Meskauskas, Int. J. Bif. Chaos 17, 3455 (2007)CrossRefGoogle Scholar
  38. 38.
    S. Kilinc, M. Yalcin, S. Ozoguz, Int. J. Bif. Chaos 20, 3275 (2010)CrossRefGoogle Scholar
  39. 39.
    M. Yalcin, Chaos, Solitons Fractals 34, 1659 (2007)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    S. Duan, L. Wang, Computers Maths. Appl. 57, 1736 (2009)Google Scholar
  41. 41.
    K. Srinivasan, I.R. Mohamed, K. Murali, M. Lakshmanan, S. Sinha, Int. J. Bif. Chaos 20, 2185 (2010)CrossRefGoogle Scholar
  42. 42.
    L.B. Le, K. Konishi, N. Hara, Nonlinear Dyn. 67, 1407 (2012)MathSciNetCrossRefGoogle Scholar
  43. 43.
    O. Kwon, J. Park, S. Lee, Nonlinear Dyn. 63, 239 (2011)MathSciNetCrossRefGoogle Scholar
  44. 44.
    V. Ponomarenko, A. Karavaev, E. Glukhovskaya, M. Prokhorov, Tech. Phys. Lett. 38, 51 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    M.D. Prokhorov, V.I. Ponomarenko, Chaos Solit. Fract. 63, 871 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    S. Banerjee, S.T.S. Jeeva, J. Kurths, Chaos 23, 013118 (2013)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    D. Valli, B. Muthuswamy, S. Banerjee, M.R.K. Ariffin, A.W.A. Wahad, K. Ganesan, C.K. Subramaniam, J. Kurths, Eur. Phys. J. Special Topics 223, 1465 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    J.J. Yang, D.B. Strukov, D.R. Stewart, Nature Nanotechnology 8, 13 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    T. Driscoll, J. Quinn, S. Klein, H.T. Kim, B.J. Kim, Y.V. Pershin, M.D. Ventra, D.N. Basov, Applied Physics Letters 97, Article ID093502 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    F. Corinto, A. Ascoli, M. Gilli, Int. J. Cir. Theory Appl. 40, 1277 (2012)CrossRefGoogle Scholar
  52. 52.
    Y.V. Pershin, M.DiVentra, Neural Networks 23, 881 (2010)CrossRefGoogle Scholar
  53. 53.
    S.P. Adhikari, C. Yang, H. Kim, L.O. Chua, IEEE Trans. Neur. Network Learning Syst. 23, 1426 (2012)CrossRefGoogle Scholar
  54. 54.
    A. Ascoli, F. Corinto, Int. J. Bif. Chaos 23, 1350052 (2013)MathSciNetCrossRefGoogle Scholar
  55. 55.
    S. Shin, K. Kim, S.M. Kang, IEEE Trans. Nanotechnology 10, 266 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    A. Ascoli, F. Corinto, V. Senger, R. Tetzlaff, IEEE Circuits Syst. Magazine 13, 89 (2013)CrossRefGoogle Scholar
  57. 57.
    R. Tetzlaff, Memristors and Memristive Systems (Springers, New York, USA, 2014)Google Scholar
  58. 58.
    B. Muthuswamy, P.P. Kokate, IETE Techn. Rev. 26, 415 (2009)CrossRefGoogle Scholar
  59. 59.
    B. Muthuswamy, Int. J. Bif. Chaos 20, 1335 (2010)CrossRefGoogle Scholar
  60. 60.
    M. Itoh, L.O. Chua, Int. J. Bif. Chaos 18, 3183 (2008)MathSciNetCrossRefGoogle Scholar
  61. 61.
    A. Buscarino, L. Fortuna, M. Frasca, L.V. Gambuzza, Chaos 22, 023136 (2012)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    Q. Li, S. Hu, S. Tang, G. Zeng, Int. J. Cir. Theory Applications 42, 1172 (2014)CrossRefGoogle Scholar
  63. 63.
    Q. Li, H. Zeng, J. Li, Nonlinear Dyns. 79, 2295 (2015)MathSciNetCrossRefGoogle Scholar
  64. 64.
    B. Muthuswamy, L.O. Chua, Int. J. Bif. Chaos 20, 1567 (2010)CrossRefGoogle Scholar
  65. 65.
    A.L. Fitch, D. Yu, H.H.C. Iu, V. Sreeram, Int. J. Bif. Chaos 22, 1250133 (2012)CrossRefGoogle Scholar
  66. 66.
    L.O. Chua, IEEE Trans. Circuit Theory 18, 507 (1971)CrossRefGoogle Scholar
  67. 67.
    L.O. Chua, S.M. Kang, Proc. IEEE 64, 209 (1976)MathSciNetCrossRefGoogle Scholar
  68. 68.
    B. Bocheng, X. Zou, Z. Liu, F. Hu, Int. J. Bif. Chaos 23, 1350135 (2013)CrossRefGoogle Scholar
  69. 69.
    S.P. Adhikari, M.P. Sah, H. Kim, L.O. Chua, IEEE Trans. Circuits Syst. I Regular Papers 60, 3008 (2013)MathSciNetCrossRefGoogle Scholar
  70. 70.
    A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 285 (1985)ADSMathSciNetCrossRefGoogle Scholar
  71. 71.
    J.C. Sprott, Phys. Lett. A 366, 397 (2007)ADSMathSciNetCrossRefGoogle Scholar
  72. 72.
    L. Wang, S. Duan, Abs. Appl. Anal. 2012, 1 (2012)Google Scholar
  73. 73.
    V.T. Pham, A. Buscarino, L. Fortuna, M. Frasca, Int. J. Bif. Chaos 23, 1350073 (2013)MathSciNetCrossRefGoogle Scholar
  74. 74.
    G. Zhang, Y. Shen, J. Sun, Neurocomputing 97, 149 (2012)CrossRefGoogle Scholar
  75. 75.
    A. Wu, Z. Zeng, Neural Networks 36, 1 (2012)CrossRefGoogle Scholar
  76. 76.
    S. Wen, Z. Zeng, T. Huang, Neurocomputing 97, 233 (2012)CrossRefGoogle Scholar
  77. 77.
    G. Zhang, Y. Shen, Neural Networks 55, 1 (2014)MathSciNetCrossRefGoogle Scholar
  78. 78.
    A. Chandrasekara, R. Rakkiyappana, J. Cao, S. Lakshmanand, Neural Networks 57, 79 (2014)CrossRefGoogle Scholar
  79. 79.
    V. Sundarapandian, I. Pehlivan, Math. Comp. Modelling 55, 1904 (2012)MathSciNetCrossRefGoogle Scholar
  80. 80.
    L. Fortuna, M. Frasca, Chaos 17, 043118 (2007)ADSMathSciNetCrossRefGoogle Scholar
  81. 81.
    K.M. Cuomo, A.V. Oppenheim, Phys. Rev. Lett. 71, 65 (1993)ADSCrossRefGoogle Scholar
  82. 82.
    M.E. Yalcin, J.A.K. Suykens, J. Vandewalle, IEEE Trans. Circuits Syst. I, Regular Papers 51, 1395 (2004)MathSciNetGoogle Scholar
  83. 83.
    C.K. Volos, I.M. Kyprianidis, I.N. Stouboulos, Signal Processing 93, 1328 (2013)CrossRefGoogle Scholar
  84. 84.
    C.K. Volos, I.M. Kyprianidis, I.N. Stouboulos, Robot. Auto. Systems 60, 651 (2012)CrossRefGoogle Scholar
  85. 85.
    A. Buscarino, L. Fortuna, M. Frasca, G. Sciuto, IEEE Trans. Circuits Syst. I Regular Papers 58, 1888 (2011)MathSciNetCrossRefGoogle Scholar
  86. 86.
    Y. Tang, Z. Wang, J.A.Fang, Commun. Nonlin. Sci. Numer. Simul. 15, 2456 (2010)CrossRefGoogle Scholar
  87. 87.
    V. Ponomarenko, M. Prokhorov, A. Karavaev, D. Kulminskiy, Nonlinear Dyn. 74, 1013 (2013)MathSciNetCrossRefGoogle Scholar
  88. 88.
    T.M. Hoang, M. Nakagawa, Chaos Solit. Fract. 38, 1423 (2008)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • V.-T. Pham
    • 1
    Email author
  • S. Vaidyanathan
    • 2
  • C.K. Volos
    • 3
  • S. Jafari
    • 4
  • N.V. Kuznetsov
    • 5
  • T.M. Hoang
    • 1
  1. 1.School of Electronics and Telecommunications, Hanoi University of Science and TechnologyHanoiVietnam
  2. 2.Research and Development Centre, Vel Tech UniversityChennai-600062India
  3. 3.Physics Department, Aristotle University of ThessalonikiThessalonikiGreece
  4. 4.Biomedical Engineering Department, Amirkabir University of TechnologyTehranIran
  5. 5.Faculty of Mathematics and Mechanics, Saint-Petersburg State UniversitySaint-PetersburgRussia

Personalised recommendations