The European Physical Journal Special Topics

, Volume 225, Issue 4, pp 663–668 | Cite as

Uninformed sacrifice: Evidence against long-range alarm transmission in foraging ants exposed to localized abduction

  • F. Tejera
  • A. Reyes
  • E. Altshuler
Regular Article
Part of the following topical collections:
  1. Cooperative Particles: Patchy Colloids, Active Matter and Nanofluids


It is well established that danger information can be transmitted by ants through relatively small distances, provoking either a state of alarm when they move away from potentially dangerous stimulus, or charge toward it aggressively. There is almost no knowledge if danger information can be transmitted along large distances. In this paper, we abduct leaf cutting ants of the species Atta insularis while they forage in their natural environment at a certain point of the foraging line, so ants make a “U” turn to escape from the danger zone and go back to the nest. Our results strongly suggest that those ants do not transmit “danger information” to other nestmates marching towards the abduction area. The individualistic behavior of the ants returning from the danger zone results in a depression of the foraging activity due to the systematic sacrifice of non-informed individuals.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Holldobler, E. Wilson, The Ants (SpringerVerlag, Berlin, 1990)Google Scholar
  2. 2.
    E. Wilson, B. Holldobler, PNAS 102, 13367 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    J. Boomsma, N.R. Franks, Trends Ecol. Evol. 21, 303 (2006)CrossRefGoogle Scholar
  4. 4.
    A.F.G. Bourke, Curr. Biol. 18, 1100 (2008)CrossRefGoogle Scholar
  5. 5.
    J.D. Halley, M.A. Elgar, Aus. J. Zool. 49, 59 (2001)CrossRefGoogle Scholar
  6. 6.
    T.O. Richardson, et al., PLoS ONE 5, 1 (2010)Google Scholar
  7. 7.
    N. Pinter-Wollman, et al., Anim. Behav. 86, 197 (2013)CrossRefGoogle Scholar
  8. 8.
    C. Noda, J. Fernández, C. Pérez-Penichet, E. Altshuler, Rev. Sci. Inst. 77, 126102 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    S.C. Nicolis, et al., Phys. Rev. Lett. 110, 268104 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    T.O. Richardson, K. Christensen, N.R. Franks, H.J. Jensen, J. R. Soc. Interface 102, 131 (2010)Google Scholar
  11. 11.
    A. John, A. Schadschneider, D. Chowdhury, K. Nishinari, Phys. Rev. Lett. 102, 108001 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    T. Sasaki, B. Holldobler, J.G. Miller, S.C. Pratt, J. Exp. Biol. 75, 3229 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Evison, A. Hart, D.E. Jackson, Anim. Behav. 75, 963 (2008)CrossRefGoogle Scholar
  14. 14.
    E. Altshuler, O. Ramos, Y. Núñez, A. Batista-Leyva, C. Noda, Am. Nat. 166, 643 (2005)CrossRefGoogle Scholar
  15. 15.
    S. Boari, R. Josens, D.R. Parisi, PLoS ONE 8, 1 (2013)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • F. Tejera
    • 1
    • 2
  • A. Reyes
    • 1
  • E. Altshuler
    • 1
  1. 1.Group of Complex Systems and Statistical Physics, Physics Faculty, University of HavanaHabanaCuba
  2. 2.Laboratory of Mathematical Physics, The Rockefeller UniversityNew YorkUSA

Personalised recommendations