The European Physical Journal Special Topics

, Volume 225, Issue 10, pp 2047–2059 | Cite as

Homophily and polarization in the age of misinformation

  • Alessandro Bessi
  • Fabio Petroni
  • Michela Del Vicario
  • Fabiana Zollo
  • Aris Anagnostopoulos
  • Antonio Scala
  • Guido Caldarelli
  • Walter QuattrociocchiEmail author
Regular Article Computational Social Science
Part of the following topical collections:
  1. Complex, Inter-networked Economic and Social Systems


The World Economic Forum listed massive digital misinformation as one of the main threats for our society. The spreading of unsubstantiated rumors may have serious consequences on public opinion such as in the case of rumors about Ebola causing disruption to health-care workers. In this work we target Facebook to characterize information consumption patterns of 1.2 M Italian users with respect to verified (science news) and unverified (conspiracy news) contents. Through a thorough quantitative analysis we provide important insights about the anatomy of the system across which misinformation might spread. In particular, we show that users’ engagement on verified (or unverified) content correlates with the number of friends having similar consumption patterns (homophily). Finally, we measure how this social system responded to the injection of 4,709 false information. We find that the frequent (and selective) exposure to specific kind of content (polarization) is a good proxy for the detection of homophile clusters where certain kind of rumors are more likely to spread.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Lotan, E. Graeff, M. Ananny, D. Gaffney, I. Pearce, D. Boyd, Int. J. Commun. 5, 1375 (2011)Google Scholar
  2. 2.
    K. Lewis, M. Gonzalez, J. Kaufman, Proceedings of the National Academy of Sciences 109, 68 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    J. Leskovec, D. Huttenlocher, J. Kleinberg, Signed networks in social media, Proc. of the SIGCHI Conf. on Human Factors in Computing Systems, CHI ’10 pp. 1361–1370 (ACM, New York, 2010)Google Scholar
  4. 4.
    J. Kleinberg, Phil. Trans. R. Soc. A: Mathematical, Physical and Engineering Sciences, 371, 20120378 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    R. Kahn, D. Kellner, New Media and Society 6, 87 (2004)CrossRefGoogle Scholar
  6. 6.
    P.N. Howard, The Arab Spring’s Cascading Effects (Miller-McCune, 2011)Google Scholar
  7. 7.
    S. Gonzalez-Bailon, J. Borge-Holthoefer, A. Rivero, Y. Moreno, The dynamics of protest recruitment through an online network, Sci. Rep. 1, 197 (2011)Google Scholar
  8. 8.
    R. Bond, J. Fariss, J. Jones, A. Kramer, C. Marlow, J. Settle, J. Fowler, Nature 489, 295 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    S. Buckingham Shum, K. Aberer, A. Schmidt, S. Bishop, P. Lukowicz, S. Anderson, Y. Charalabidis, J. Domingue, S. Freitas, I. Dunwell, B. Edmonds, F. Grey, M. Haklay, M. Jelasity, A. Karpištšenko, J. Kohlhammer, J. Lewis, J. Pitt, R. Sumner, D. Helbing, Eur. Phys. J. Special Topics 214, 109 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    D. Centola, Science 329, 1194 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    M. Paolucci, T. Eymann, W. Jager, J. Sabater-Mir, R. Conte, S. Marmo, S. Picascia, W. Quattrociocchi, T. Balke, S. Koenig, T. Broekhuizen, D. Trampe, M. Tuk, I. Brito, I. Pinyol, D. Villatoro, Social Knowledge for e-Governance: Theory and Technology of Reputation. Roma: ISTC-CNR, 2009Google Scholar
  12. 12.
    W. Quattrociocchi, R. Conte, E. Lodi, Advances in Complex Systems 14, 567 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    W. Quattrociocchi, M. Paolucci, R. Conte, Int. J. Knowledge and Learning 5, 457 (2009)CrossRefGoogle Scholar
  14. 14.
    V. Bekkers, H. Beunders, A. Edwards, R. Moody, The Information Society 27, 209 (2011)CrossRefGoogle Scholar
  15. 15.
    W. Quattrociocchi, G. Caldarelli, A. Scala, Opinion dynamics on interacting networks: media competition and social influence, Sci. Rep. 4, 4938 (2014)Google Scholar
  16. 16.
    L. Howell, Digital wildfires in a hyperconnected world, WEF Report 2013, World Economic Forum, 2013Google Scholar
  17. 17.
  18. 18.
    Facebook, Trolls, and Italian Politics., March 2014
  19. 19.
    G. Ambrosetti, I forconi: “il senato ha approvato una legge per i parlamentari in crisi”. chi non verrà rieletto, oltre alla buonuscita, si beccherà altri soldi. sarà vero?, 8 2013. last checked: 19.01.2014
  20. 20.
  21. 21.
  22. 22.
  23. 23.
    M.L. Meade, H.L. Roediger, Memory and Cognition 30, 995 (2002)CrossRefGoogle Scholar
  24. 24.
    C. Mann, F. Stewart, Internet Communication and Qualitative Research: A Handbook for Researching Online (New Technologies for Social Research series). (Sage Publications Ltd, September, 2000)Google Scholar
  25. 25.
    R.K. Garrett, B.E. Weeks, The promise and peril of real-time corrections to political misperceptions, Proc. 2013 Conf. on Computer supported cooperative work, Proceedings of CSCW ’13(ACM, 2013), pp. 1047–1058Google Scholar
  26. 26.
    A. Bessi, G. Caldarelli, M. Del Vicario, A. Scala, W. Quattrociocchi, Social determinants of content selection in the age of (mis)information, in Social Informatics, Vol. 8851 of Lecture Notes in Computer Science (Springer International Publishing, 2014), pp. 259–268Google Scholar
  27. 27.
    D. Mocanu, L. Rossi, Q. Zhang, M. Karsai, W. Quattrociocchi, Collective attention in the age of (mis)information, in Computers in Human Behavior (2015)Google Scholar
  28. 28.
    A. Bessi, M. Coletto, G.A. Davidescu, A. Scala, G. Caldarelli, W. Quattrociocchi, Science vs conspiracy: Collective narratives in the age of misinformation, PLoS ONE 10, 02 (2015)Google Scholar
  29. 29.
    M.D. Vicario, A. Bessi, F. Zollo, F. Petroni, A. Scala, G. Caldarelli, H.E. Stanley, W. Quattrociocchi, Proceedings of the National Academy of Sciences 113, 554 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    J. Ugander, B. Lars, M. Cameron, J. Kleinberg, Proceedings of the National Academy of Sciences (2012)Google Scholar
  31. 31.
    D. Centola, M. Macy, Amer. J. Socio. 113, 702 (2007)CrossRefGoogle Scholar
  32. 32.
    S. Aral, D. Walker, Science 337, 337 (2012)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    M. McPherson, L. Smith-Lovin, J.M. Cook, Annu. Rev. Sociol. 27, 415 (2001)CrossRefGoogle Scholar
  34. 34.
    L.M. Aiello, A. Barrat, R. Schifanella, C. Cattuto, B. Markines, F. Menczer, ACM Transactions on the Web (TWEB) 6, 9 (2012)Google Scholar
  35. 35.
    S. Aral, L. Muchnik, A. Sundararajan, Proceedings of the National Academy of Sciences 106, 21544 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    E. Bakshy, I. Rosenn, C. Marlow, L. Adamic, The role of social networks in information diffusion, WWW’12 (2012)Google Scholar
  37. 37.
    D. Centola, J. Conflict Resolution 51, 905 (2007)CrossRefGoogle Scholar
  38. 38.
    E. Adar, Li Zhang, L.A. Adamic, R.M. Lukose, Implicit structure and the dynamics of blogspace, Workshop on the weblogging ecosystem, Vol. 13, pp. 16989–16995 (2004)Google Scholar
  39. 39.
    D. Gruhl, R. Guha, D. Liben-Nowell, A. Tomkins, Information diffusion through blogspace, in Proc. 13th Int. Conf. on World Wide Web, pp. 491–501 (ACM, 2004)Google Scholar
  40. 40.
    J. Leskovec, M. McGlohon, C. Faloutsos, N.S. Glance, M. Hurst, Patterns of cascading behavior in large blog graphs, in SDM, Vol. 7, pp. 551–556. (SIAM, 2007)Google Scholar
  41. 41.
    B. Golub, M.O. Jackson, Proceedings of the National Academy of Sciences 107, 10833 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    D. Liben-Nowell, J. Kleinberg, Proceedings of the National Academy of Sciences 105, 4633 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    E. Bakshy, J.M. Hofman, W.A. Mason, D.J. Watts, Everyone’s an influencer: quantifying influence on twitter, in Proc. of the fourth ACM Int. Conf. on Web search and data mining (ACM, 2011), pp. 65–74Google Scholar
  44. 44.
    K. Lerman, R. Ghosh, Information contagion: An empirical study of the spread of news on digg and twitter social networks. ICWSM, Vol. 10, pp. 90–97 (2010)Google Scholar
  45. 45.
    C. Castillo, M. Mendoza, B. Poblete, Information credibility on twitter, in Proceedings of the 20th international conference on World wide web (ACM, 2011), pp. 675–684Google Scholar
  46. 46.
    J. Cheng, L. Adamic, P.A. Dow, J.M. Kleinberg, J. Leskovec, Can cascades be predicted? in Proceedings of the 23rd international conference on World Wide Web, pp. 925–936. International World Wide Web Conferences Steering Committee, 2014Google Scholar
  47. 47.
    P.A. Dow, L.A. Adamic, A. Friggeri, The anatomy of large facebook cascades, in ICWSM (2013)Google Scholar
  48. 48.
    A. Friggeri, L.A. Adamic, D. Eckles, J. Cheng, Rumor cascades, in Proceedings of the Eighth International AAAI Conference on Weblogs and Social Media. Association for the Advancement of Artificial Intelligence (2014)Google Scholar
  49. 49.
    Facebook Page: Semplicemente me, November 2014.
  50. 50.
    Facebook Page:Simply Humans, November 2014.
  51. 51.
    J. Brown, A.J. Broderick, N. Lee, J. Interactive Marketing, 21, 2 (2007)CrossRefGoogle Scholar
  52. 52.
  53. 53.
  54. 54.

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • Alessandro Bessi
    • 1
    • 2
  • Fabio Petroni
    • 3
  • Michela Del Vicario
    • 2
  • Fabiana Zollo
    • 2
  • Aris Anagnostopoulos
    • 3
  • Antonio Scala
    • 4
  • Guido Caldarelli
    • 2
  • Walter Quattrociocchi
    • 1
    Email author
  1. 1.IUSSPaviaItaly
  2. 2.IMT Institute for Advanced StudiesLuccaItaly
  3. 3.Sapienza UniversityRomaItaly
  4. 4.ISC-CNRRomaItaly

Personalised recommendations