The European Physical Journal Special Topics

, Volume 225, Issue 4, pp 685–698 | Cite as

Electric double layer of anisotropic dielectric colloids under electric fields

Regular Article
Part of the following topical collections:
  1. Cooperative Particles: Patchy Colloids, Active Matter and Nanofluids

Abstract

Anisotropic colloidal particles constitute an important class of building blocks for self-assembly directed by electrical fields. The aggregation of these building blocks is driven by induced dipole moments, which arise from an interplay between dielectric effects and the electric double layer. For particles that are anisotropic in shape, charge distribution, and dielectric properties, calculation of the electric double layer requires coupling of the ionic dynamics to a Poisson solver. We apply recently proposed methods to solve this problem for experimentally employed colloids in static and time-dependent electric fields. This allows us to predict the effects of field strength and frequency on the colloidal properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Lakes, Nature 361, 511 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    C. Sanchez, H. Arribart, M.M. Giraud Guille, Nat. Mater. 4, 277 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    J. Aizenberg, J.C. Weaver, M.S. Thanawala, V.C. Sundar, D.E. Morse, P. Fratzl, Science 309, 275 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    O.D. Velev, S. Gupta, Adv. Mater. 21, 1 (2009)CrossRefGoogle Scholar
  5. 5.
    F. Li, D.P. Josephson, A. Stein, Angew. Chem. Int. Ed. 50, 360 (2011)CrossRefGoogle Scholar
  6. 6.
    N. Vogel, C.K. Weiss, K. Landfester, Soft Matt. 8, 4044 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    P.F. Damasceno, M. Engel, S.C. Glotzer, Science 337, 453 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    P.N. Pusey, W. van Megen, P. Bartlett, B.J. Ackerson, J.G. Rarity, S.M. Underwood, Phys. Rev. Lett. 63, 2753 (1989)ADSCrossRefGoogle Scholar
  9. 9.
    J. Zhang, E. Luijten, S. Granick, Ann. Rev. Phys. Chem. 66, 581 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Z. Zhang, S.C. Glotzer, Nano Lett. 4, 1407 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Z. Zhang, A.S. Keys, T. Chen, S.C. Glotzer, Langmuir 21, 11547 (2005)CrossRefGoogle Scholar
  12. 12.
    S. Lin, M. Li, E. Dujardin, C. Girard, S. Mann, Adv. Mater. 17, 2553 (2005)CrossRefGoogle Scholar
  13. 13.
    L. Hong, A. Cacciuto, E. Luijten, S. Granick, Nano Lett. 6, 2510 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    S.C. Glotzer, M.J. Solomon, Nat. Mater. 6, 557 (2007)CrossRefGoogle Scholar
  15. 15.
    L. Hong, A. Cacciuto, E. Luijten, S. Granick, Langmuir 24, 621 (2008)CrossRefGoogle Scholar
  16. 16.
    Q. Chen, J.K. Whitmer, S. Jiang, S.C. Bae, E. Luijten, S. Granick, Science 331, 199 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Q. Chen, S.C. Bae, S. Granick, Nature 469, 381 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Wang, Y. Wang, D.R. Breed, V.N. Manoharan, L. Feng, A.D. Hollingsworth, M. Weck, D.J. Pine, Nature 491, 51 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    D.J. Kraft, R. Ni, F. Smallenburg, M. Hermes, K. Yoon, D.A. Weitz, A. van Blaaderen, J. Groenewold, M. Dijkstra, W.K. Kegel, Proc. Natl. Acad. Sci. USA 109, 10787 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    A.B. Pawar, I. Kretzschmar, Langmuir 24, 355 (2008)CrossRefGoogle Scholar
  21. 21.
    Q. Chen, E. Diesel, J.K. Whitmer, S.C. Bae, E. Luijten, S. Granick, J. Am. Chem. Soc. 133, 7725 (2011)CrossRefGoogle Scholar
  22. 22.
    S. Sacanna, W.T.M. Irvine, P.M. Chaikin, D.J. Pine, Nature 464, 575 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    V.N. Manoharan, M.T. Elsesser, D.J. Pine, Science 301, 483 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    S. Jiang, Q. Chen, M. Tripathy, E. Luijten, K.S. Schweizer, S. Granick, Adv. Mater. 22, 1060 (2010)CrossRefGoogle Scholar
  25. 25.
    D.R. Nelson, Nano Lett. 2, 1125 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    A. Yethiraj, A. van Blaaderen, Nature 421, 513 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    N. Osterman, I. Poberaj, J. Dobnikar, D. Frenkel, P. Ziherl, D. Babić, Phys. Rev. Lett. 103, 228301 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    F. Smallenburg, H.R. Vutukuri, A. Imhof, A. van Blaaderen, M. Dijkstra, J. Phys.: Condens. Matter 24, 464113 (2012)ADSGoogle Scholar
  29. 29.
    B. Liu, T.H. Besseling, M. Hermes, A.F. Demirörs, A. Imhof, A. van Blaaderen, Nat. Comm. 5, 3092 (2014)ADSGoogle Scholar
  30. 30.
    J.J. Crassous, A.M. Mihut, E. Wernersson, P. Pfleiderer, J. Vermant, P. Linse, P. Schurtenberger, Nat. Comm. 5, 5516 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    B. Bharti, O.D. Velev, Langmuir 31, 7897 (2015)CrossRefGoogle Scholar
  32. 32.
    M.E. Leunissen, H.R. Vutukuri, A. van Blaaderen, Adv. Mater. 21, 3116 (2009)CrossRefGoogle Scholar
  33. 33.
    J.E. Martin, R.A. Anderson, R.L. Williamson, J. Chem. Phys. 118, 1557 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    S. Gangwal, A. Pawar, I. Kretzschmar, O.D. Velev, Soft Matt. 6, 1413 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    J. Yan, M. Bloom, S.C. Bae, E. Luijten, S. Granick, Nature 491, 578 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    J. Yan, S.C. Bae, S. Granick, Adv. Mater. 27, 874 (2015)CrossRefGoogle Scholar
  37. 37.
    P. Song, Y. Wang, Y. Wang, A.D. Hollingsworth, M. Weck, D.J. Pine, M.D. Ward, J. Am. Chem. Soc. 137, 3069 (2015)CrossRefGoogle Scholar
  38. 38.
    D.G. Levitt, Biophys. J. 22, 209 (1978)ADSCrossRefGoogle Scholar
  39. 39.
    R.J. Zauhar, R.S. Morgan, J. Mol. Biol. 186, 815 (1985)CrossRefGoogle Scholar
  40. 40.
    R. Allen, J.P. Hansen, S. Melchionna, Phys. Chem. Chem. Phys. 3, 4177 (2001)CrossRefGoogle Scholar
  41. 41.
    D. Boda, D. Gillespie, W. Nonner, D. Henderson, B. Eisenberg, Phys. Rev. E 69, 046702 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    V. Jadhao, F.J. Solis, M. Olvera de la Cruz, Phys. Rev. Lett. 109, 223905 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    K. Barros, D. Sinkovits, E. Luijten, J. Chem. Phys. 140, 064903 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    K. Barros, E. Luijten, Phys. Rev. Lett. 113, 017801 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    W.H. Haynes (ed.), CRC Handbook of Chemistry and Physics, 96th edn. (CRC Press, Boca Baton, FL, 2015)Google Scholar
  46. 46.
    P.N. Butcher, D. Cotter, The elements of nonlinear optics (Cambridge University Press, Cambridge, UK, 1990)Google Scholar
  47. 47.
    H. Wu, M. Han, E. Luijten, Dielectric effects on the electric double layer of a Janus colloid (2016)Google Scholar
  48. 48.
    D. Long, A. Ajdari, Phys. Rev. Lett. 81, 1529 (1998)ADSCrossRefGoogle Scholar
  49. 49.
    J.A. Levitan, S. Devasenathipathy, V. Studer, Y. Ben, T. Thorsen, T.M. Squires, M.Z. Bazant, Colloids Surf. A 267, 122 (2005)CrossRefGoogle Scholar
  50. 50.
    M.Z. Bazant, Y. Ben, Lab Chip 6, 1455 (2006)CrossRefGoogle Scholar
  51. 51.
    T.M. Squires, M.Z. Bazant, J. Fluid Mech. 560, 65 (2006)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    M.Z. Bazant, M.S. Kilic, B.D. Storey, A. Ajdari, Adv. Colloid Interface Sci. 152, 48 (2009)CrossRefGoogle Scholar
  53. 53.
    J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)Google Scholar
  54. 54.
    C.S. Mangelsdorf, L.R. White, Trans. Faraday Soc. 93, 3145 (1997)CrossRefGoogle Scholar
  55. 55.
    H.S. Harned, R.L. Nuttall, J. Am. Chem. Soc. 69, 736 (1947)CrossRefGoogle Scholar
  56. 56.
    D. Zerrouki, J. Baudry, D. Pine, P. Chaikin, J. Bibette, Nature 455, 380 (2008)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  1. 1.Graduate Program in Applied Physics, Northwestern UniversityEvanstonUSA
  2. 2.Department of Physics and AstronomyNorthwestern UniversityEvanstonUSA
  3. 3.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA
  4. 4.Department of Engineering Sciences and Applied MathematicsNorthwestern UniversityEvanstonUSA

Personalised recommendations