Advertisement

The European Physical Journal Special Topics

, Volume 225, Issue 4, pp 729–739 | Cite as

Shape and scale dependent diffusivity of colloidal nanoclusters and aggregates

  • M.M.T. AlcanzareEmail author
  • S.T.T. Ollila
  • V. Thakore
  • A.M. Laganapan
  • A. Videcoq
  • M. Cerbelaud
  • R. Ferrando
  • T. Ala-Nissila
Regular Article
Part of the following topical collections:
  1. Cooperative Particles: Patchy Colloids, Active Matter and Nanofluids

Abstract

The diffusion of colloidal nanoparticles and nanomolecular aggregates, which plays an important role in various biophysical and physicochemical phenomena, is currently under intense study. Here, we examine the shape and size dependent diffusion of colloidal nano- particles, fused nanoclusters and nanoaggregates using a hybrid fluctuating lattice Boltzmann-Molecular Dynamics method. We use physically realistic parameters characteristic of an aqueous solution, with explicitly implemented microscopic no-slip and full-slip boundary conditions. Results from nanocolloids below 10 nm in radii demonstrate how the volume fraction of the hydrodynamic boundary layer influences diffusivities. Full-slip colloids are found to diffuse faster than no-slip particles. We also characterize the shape dependent anisotropy of the diffusion coefficients of nanoclusters through the Green-Kubo relation. Finally, we study the size dependence of the diffusion of nanoaggregates comprising N ≤ 108 monomers and demonstrate that the diffusion coefficient approaches the continuum scaling limit of N −1/3.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. 1.
    S.M. You, J.H. Kim, K.H. Kim, Appl. Phys. Lett. 83, 3374 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    A. Meriläinen, A. Seppälä, K. Saari, J. Seitsonen, J. Ruokolainen, S. Puisto, N. Rostedt, T. Ala-Nissila, Int. J. Heat Mass Transf. 61, 439 (2013)CrossRefGoogle Scholar
  3. 3.
    X.-Q. Wang, A.S. Mujumdar, Int. J. Therm. Sci. 46, 1 (2007)CrossRefGoogle Scholar
  4. 4.
    S.P. Jang, S.U.S. Choi, Appl. Phys. Lett. 84, 4316 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    K.S. Soppimath, T.M. Aminabhavi, A.R. Kulkarni, W.E. Rudzinski, J. Control. Release 70, 1 (2001)CrossRefGoogle Scholar
  6. 6.
    E.C. Cho, Q. Zhang, Y. Xia, Nat. Nanotechnol. 6, 385 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    N. Vogel, C.K. Weiss, K. Landfester, Soft Matter 8, 4044 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    M. Cerbelaud, A. Videcoq, P. Abélard, C. Pagnoux, F. Rossignol, R. Ferrando, Langmuir 24, 3001 (2008)CrossRefGoogle Scholar
  9. 9.
    M.A. Piechowiak, A. Videcoq, F. Rossignol, C. Pagnoux, C. Carrion, M. Cerbelaud, R. Ferrando, Langmuir 26, 12540 (2010)CrossRefGoogle Scholar
  10. 10.
    F. Li, D.P. Josephson, A. Stein, Angew. Chem. Int. Ed. Engl. 50, 360 (2011)CrossRefGoogle Scholar
  11. 11.
    L. Hong, S.M. Anthony, S. Granick, Langmuir 22, 7128 (2006)CrossRefGoogle Scholar
  12. 12.
    M. Hoffmann, C.S. Wagner, L. Harnau, A. Wittemann, ACS Nano 3, 3326 (2009)CrossRefGoogle Scholar
  13. 13.
    I. Snook, B. O’Malley, M. McPhie, P. Daivis, J. Mol. Liq. 103–104, 405 (2003)CrossRefGoogle Scholar
  14. 14.
    H.K. Shin, C. Kim, P. Talkner, E.K. Lee, Chem. Phys. 375, 316 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Z. Li, Phys. Rev. E 80, 061204 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    A. Tomilov, A. Videcoq, M. Cerbelaud, M.A. Piechowiak, T. Chartier, T. Ala-Nissila, D. Bochicchio, R. Ferrando, J. Phys. Chem. B 117, 14509 (2013)CrossRefGoogle Scholar
  17. 17.
    Y. Zhu, S. Granick, Phys. Rev. Lett. 88, 106102 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    S. Richardson, J. Fluid Mech. 59, 707 (1973)ADSCrossRefGoogle Scholar
  19. 19.
    C. Neto, D.R. Evans, E. Bonaccurso, H.-J. Butt, V.S.J. Craig, Reports Prog. Phys. 68, 2859 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    E. Lauga, M. Brenner, H. Stone, Springer Handb. Exp. Fluid Mech., 1219–1240 (2007)Google Scholar
  21. 21.
    Y. Jiang, G.J. Blanchard, J. Phys. Chem. 98, 6436 (1994)CrossRefGoogle Scholar
  22. 22.
    C.E. Hay, F. Marken, G.J. Blanchard, J. Phys. Chem. A 114, 4957 (2010)CrossRefGoogle Scholar
  23. 23.
    J.R. Mannekutla, S.R. Inamdar, B.G. Mulimani, M.I. Savadatti, J. Fluoresc. 20, 797 (2010)CrossRefGoogle Scholar
  24. 24.
    G.B. Dutt, A. Sachdeva, J. Chem. Phys. 118, 8307 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    S. Ebbinghaus, S.J. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D.M. Leitner, M. Havenith, Proc. Natl. Acad. Sci. USA 104, 20749 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    U. Møller, D.G. Cooke, K. Tanaka, P.U. Jepsen, J. Opt. Soc. Am. B 26, A113 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    L. Duponchel, S. Laurette, B. Hatirnaz, a. Treizebre, F. Affouard, B. Bocquet, Chemom. Intell. Lab. Syst. 123, 28 (2013)CrossRefGoogle Scholar
  28. 28.
    U. Heugen, G. Schwaab, E. Bründermann, M. Heyden, X. Yu, D.M. Leitner, M. Havenith, Proc. Natl. Acad. Sci. USA 103, 12301 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    K. Salorinne, T. Lahtinen, J. Koivisto, E. Kalenius, M. Nissinen, M. Pettersson, H. Häkkinen, Anal. Chem. 85, 3489 (2013)CrossRefGoogle Scholar
  30. 30.
    J. Padding, A. Louis, Phys. Rev. E 74, 031402 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    M. Jardat, O. Bernard, P. Turq, G.R. Kneller, J. Chem. Phys. 110, 7993 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    A. Malevanets, R. Kapral, J. Chem. Phys. 110, 8605 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    P. Hoogerbrugge, J. Koelman, Europhys. Lett. 19, 155 (1992)ADSCrossRefGoogle Scholar
  34. 34.
    S.T.T. Ollila, C. Denniston, M. Karttunen, T. Ala-Nissila, J. Chem. Phys. 134, 064902 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    A. Tomilov, A. Videcoq, T. Chartier, T. Ala-Nissila, I. Vattulainen, J. Chem. Phys. 137 (2012)Google Scholar
  36. 36.
    F. Mackay, S. Ollila, C. Denniston, Comput. Phys. Commun. 184, 2021 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar
  38. 38.
    S.T.T. Ollila, C. Smith, T. Ala-Nissila, C. Denniston, Multiscale Model. Simul. 11, 213 (2013)MathSciNetCrossRefGoogle Scholar
  39. 39.
    O. Punkkinen, E. Falck, I. Vattulainen, T. Ala-Nissila, J. Chem. Phys. 122, 094904 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    I.-C. Yeh, G. Hummer, J. Phys. Chem. B 108, 15873 (2004)CrossRefGoogle Scholar
  41. 41.
    V. Lobaskin, B. Dünweg, New J. Phys. 6, 54 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    D.M. Heyes, M.J. Cass, J.G. Powles, W.A.B. Evans, J. Phys. Chem. B 111, 1455 (2007)CrossRefGoogle Scholar
  43. 43.
    B. Halle, M. Davidovic, Proc. Natl. Acad. Sci. USA 100, 12135 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    D.J. Evans, G.P. Morriss (Anu E Press, 2007), Chapter 6Google Scholar
  45. 45.
    J.D. Schmit, K. Ghosh, K. Dill, Biophys. J. 100, 450 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    J. Garcia de la Torre, S. Navarro, M.C. Lopez Martinez, F.G. Diaz, J.J. Lopez Cascales, Biophys. J. 67, 530 (1994)CrossRefGoogle Scholar
  47. 47.
    J. García de la Torre, G. del Rio Echenique, A. Ortega, J. Phys. Chem. B 111, 955 (2007)CrossRefGoogle Scholar
  48. 48.
    J. Garcia de la Torre, Biophys. Chem. 93, 159 (2001)CrossRefGoogle Scholar
  49. 49.
    W. Humphrey, A. Dalke, K. Schulten, J. Molec. Graph. 14, 33 (1996)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • M.M.T. Alcanzare
    • 1
    Email author
  • S.T.T. Ollila
    • 1
  • V. Thakore
    • 1
  • A.M. Laganapan
    • 2
  • A. Videcoq
    • 2
  • M. Cerbelaud
    • 2
  • R. Ferrando
    • 3
  • T. Ala-Nissila
    • 1
    • 4
  1. 1.COMP CoE at the Department of Applied Physics, Aalto University School of ScienceAalto, EspooFinland
  2. 2.SPCTS, UMR 7315, ENSCI, CNRS, Centre Européen de la CéramiqueLimogesFrance
  3. 3.Dipartimento di Fisica, Università degli Studi di GenovaGenovaItaly
  4. 4.Department of PhysicsBrown UniversityProvidenceRhode Island 02912-1843USA

Personalised recommendations