The European Physical Journal Special Topics

, Volume 225, Issue 4, pp 707–714 | Cite as

Silver nanocluster catalytic microreactors for water purification

  • B. Da Silva
  • M. Habibi
  • S. Ognier
  • G. Schelcher
  • J. Mostafavi-Amjad
  • H.R.M. Khalesifard
  • M. Tatoulian
  • D. Bonn
Regular Article
Part of the following topical collections:
  1. Cooperative Particles: Patchy Colloids, Active Matter and Nanofluids

Abstract

A new method for the elaboration of a novel type of catalytic microsystem with a high specific area catalyst is developed. A silver nanocluster catalytic microreactor was elaborated by doping a soda-lime glass with a silver salt. By applying a high power laser beam to the glass, silver nanoclusters are obtained at one of the surfaces which were characterized by BET measurements and AFM. A microfluidic chip was obtained by sealing the silver coated glass with a NOA 81 microchannel. The catalytic activity of the silver nanoclusters was then tested for the efficiency of water purification by using catalytic ozonation to oxidize an organic pollutant. The silver nanoclusters were found to be very stable in the microreactor and efficiently oxidized the pollutant, in spite of the very short residence times in the microchannel. This opens the way to study catalytic reactions in microchannels without the need of introducing the catalyst as a powder or manufacturing complex packed bed microreactors.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bartolo, G. Degré, P. Nghe, V. Studer, Lab on a Chip 8, 274 (2008)CrossRefGoogle Scholar
  2. 2.
    G. Battaglin, E. Borsella, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, Formation of nonlinear optical MQD (metal quantum dot) in waveguides and modification by high-power laser irradiation, edited by Vlad, V.I., Dumitras, D.C. (1998), p. 533Google Scholar
  3. 3.
    I.R. Baxendale, C.M. Griffiths-Jones, S.V. Ley, G.K. Tranmer, Chem. Eur. J. 12, 4407 (2006)CrossRefGoogle Scholar
  4. 4.
    A.R. Bogdan, B.P. Mason, K.T. Sylvester, D.T. McQuade, Angewandte Chemie International Edition 46, 1698 (2007)CrossRefGoogle Scholar
  5. 5.
    M.-O. Buffle, J. Schumacher, S. Meylan, M. Jekel, U. Von Gunten. Ozone: Sci. Eng. 28, 247 (2006)CrossRefGoogle Scholar
  6. 6.
    F. Costantini, W.P. Bula, R. Salvio, J. Huskens, H.J.G.E. Gardeniers, D.N. Reinhoudt, W. Verboom, J. Amer. Chem. Soc. 131, 1650 (2009)CrossRefGoogle Scholar
  7. 7.
    A.J. deMello, Nature 442, 394 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    A. Ghosh, R. Ganguly, T.M. Schutzius, C.M. Megaridis, Lab on a Chip 14, 1538 (2014)CrossRefGoogle Scholar
  9. 9.
    F. Gottschalk, T. Sonderer, R.W. Scholz, B. Nowack, Environ. Sci. Technol. 43, 9216 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    F. Gonella, Rev. Adv. Mater. Sci. 14, 134 (2007)Google Scholar
  11. 11.
    G.M. Greenway, S.J. Haswell, D.O. Morgan, V. Skelton, P. Styring, Sensors and Actuators B: Chemical 63, 153 (2000)CrossRefGoogle Scholar
  12. 12.
    W.R. Haag, C.C.D. Yao, Environ. Sci. Technol. 26, 1005 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    K.F. Jensen, B.J. Reizman, S.G. Newman, Lab on a Chip 14, 3206 (2014)CrossRefGoogle Scholar
  14. 14.
    B. Kasprzyk-Hordern, Appl. Catal. B: Environ. 46, 639 (2003)CrossRefGoogle Scholar
  15. 15.
    J. Kobayashi, Science 304, 1305–1308 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    W. Li, Z. Qiang, T. Zhang, F. Cao, Appl. Catal. B: Environ. 113–114, 290 (2012)CrossRefGoogle Scholar
  17. 17.
    J. Lin, A. Kawai, T. Nakajima, Appl. Catal. B: Environ. 39, 157 (2002)CrossRefGoogle Scholar
  18. 18.
    M.A. Massa, C. Covarrubias, M. Bittner, I.A. Fuentevilla, P. Capetillo, A. Von Marttens, J.C. Carvajal, Mater. Sci. Eng.: C Materials for Biological Applications 45, 146 (2014)CrossRefGoogle Scholar
  19. 19.
    J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez, M.J. Yacaman, Nanotechnol. 16, 2346 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    A. Nahal, H.R.M. Khalesifard, Optical Mater. 29, 987 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    A. Nahal, H.R.M. Khalesifard, J. Mostafavi-Amjad, Appl. Phys. B 79, 513 (2004)CrossRefGoogle Scholar
  22. 22.
    X. Ouyang, R. Besser, Catalysis Today 84, 33 (2003)CrossRefGoogle Scholar
  23. 23.
    C.P. Park, D.-P. Kim, J. Am. Chem. Soc. 132, 10102 (2010)CrossRefGoogle Scholar
  24. 24.
    H. Pennemann, V. Hessel, H. Löwe, Chem. Eng. Sci. 59, 4789 (2004)CrossRefGoogle Scholar
  25. 25.
    D.S. Pines, D.A. Reckhow, Environ. Sci. Technol. 36, 4046 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    F. Qi, Z. Chen, B. Xu, J. Shen, J. Ma, C. Joll, A. Heitz, Appl. Catal. B: Environ. 84, 684 (2008)CrossRefGoogle Scholar
  27. 27.
    F. Rivas, M. Carbajo, F. Beltran, B. Acedo, O. Gimeno, Appl. Catal. B: Environ. 62, 93 (2006)CrossRefGoogle Scholar
  28. 28.
    D. Schafer, J.A. Squier, J. Maarseveen, van D., Bonn, M., Bonn, M., Müller, J. Am. Chem. Soc. 130, 11592 (2008)CrossRefGoogle Scholar
  29. 29.
    E. Sollier, C. Murray, P. Maoddi, D. Di Carlo, Lab on a Chip 11, 3752 (2011)CrossRefGoogle Scholar
  30. 30.
    C. Tizaoui, N.M. Grima, M.Z. Derdar, Chem. Eng. Sci. 64, 4375 (2009)CrossRefGoogle Scholar
  31. 31.
    M. Ueno, T. Suzuki, T. Naito, H. Oyamada, S. Kobayashi, Chem. Comm., 1647 (2008)Google Scholar
  32. 32.
    Y. Uozumi, Y.M.A. Yamada, T. Beppu, N. Fukuyama, M. Ueno, T. Kitamori, J. Am. Chem. Soc. 128, 15994 (2006)CrossRefGoogle Scholar
  33. 33.
    U. Von Gunten, Water Research 37, 1443 (2003)CrossRefGoogle Scholar
  34. 34.
    Y. Xia, G.M. Whitesides, Soft Lithography. Angewandte Chemie International Edition 37, 550 (1998)CrossRefGoogle Scholar
  35. 35.
    Y.M.A. Yamada, T. Watanabe, T. Beppu, N. Fukuyama, K. Torii, Y. Uozumi, Chem. A Eur. J. 16, 11311 (2010)CrossRefGoogle Scholar
  36. 36.
    A.K. Yetisen, M.S. Akram, C.R. Lowe, Lab on a Chip 13, 2210 (2013)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • B. Da Silva
    • 1
    • 2
    • 3
  • M. Habibi
    • 3
    • 4
  • S. Ognier
    • 1
    • 2
  • G. Schelcher
    • 1
  • J. Mostafavi-Amjad
    • 4
  • H.R.M. Khalesifard
    • 4
  • M. Tatoulian
    • 1
  • D. Bonn
    • 1
    • 3
  1. 1.Institut de Recherche de Chimie Paris – ENSCP/CNRS11 rue Pierre et Marie CurieParisFrance
  2. 2.UPMC, Univ. Paris 06ParisFrance
  3. 3.Institute of Physics, University of AmsterdamAmsterdamThe Netherlands
  4. 4.Department of PhysicsInstitute for Advanced Studies in Basic Sciences (IASBS)ZanjanIran

Personalised recommendations