Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 17–18, pp 3419–3434 | Cite as

Hydrodynamic thrust generation and power consumption investigations for piezoelectric fins with different aspect ratios

  • S. Shahab
  • D. Tan
  • A. Erturk
Regular Article Applied Physics and Robotics
Part of the following topical collections:
  1. Dynamics of Animal Systems

Abstract

Bio-inspired hydrodynamic thrust generation using piezoelectric transduction has recently been explored using Macro-Fiber Composite (MFC) actuators. The MFC technology strikes a balance between the actuation force and structural deformation levels for effective swimming performance, and additionally offers geometric scalability, silent operation, and ease of fabrication. Recently we have shown that mean thrust levels comparable to biological fish of similar size can be achieved using MFC fins. The present work investigates the effect of length-to-width (L/b) aspect ratio on the hydrodynamic thrust generation performance of MFC cantilever fins by accounting for the power consumption level. It is known that the hydrodynamic inertia and drag coefficients are controlled by the aspect ratio especially for L/b< 5. The three MFC bimorph fins explored in this work have the aspect ratios of 2.1, 3.9, and 5.4. A nonlinear electrohydroelastic model is employed to extract the inertia and drag coefficients from the vibration response to harmonic actuation for the first bending mode. Experiments are then conducted for various actuation voltage levels to quantify the mean thrust resultant and power consumption levels for different aspect ratios. Variation of the thrust coefficient of the MFC bimorph fins with changing aspect ratio is also semi-empirically modeled and presented.

Keywords

Aspect Ratio European Physical Journal Special Topic Actuation Voltage Average Power Consumption Virtual Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Kim, D.-H. Kim, J. Jung, J.-O. Park, Smart Mater. Struct. 14, 1579 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    W.-S. Chu, K.-T. Lee, S.-H. Song, M.-W. Han, J.-Y. Lee, H.-S. Kim, M.-S. Kim, Y.-J. Park, K.-J. Cho, S.-H. Ahn, Int. J. Precision Eng. Manuf. 13, 1281 (2012)CrossRefGoogle Scholar
  3. 3.
    X. Tan, D. Kim, N. Usher, D. Laboy, J. Jackson, A. Kapetanovic, J. Rapai, B. Sabadus, X. Zhou, Intell. Robots Syst., IEEE/RSJ Int. Conf. IEEE (2006)Google Scholar
  4. 4.
    X. Ye, Y. Su, S. Guo, Robotics Biomimetics, ROBIO 2007. IEEE Int. Conf. IEEE (2007)Google Scholar
  5. 5.
    X. Ye, Y. Su, S. Guo, L. Wang, In Adv. Intell. Mechatronics, AIM 2008. IEEE/ASME Int. Conf. IEEE (2008)Google Scholar
  6. 6.
    Z. Chen, S. Shatara, X. Tan, Mechatronics, IEEE/ASME Trans. 15, 448 (2010)CrossRefGoogle Scholar
  7. 7.
    E. Mbemmo, Z. Chen, S. Shatara, X. Tan, Robotics Automation, ICRA 2008. IEEE Int. Conf. IEEE (2008)Google Scholar
  8. 8.
    M. Aureli, V. Kopman, M. Porfiri, Mechatronics, IEEE/ASME Trans. 15, 603 (2010)CrossRefGoogle Scholar
  9. 9.
    V. Kopman, M. Porfiri, Mechatronics, IEEE/ASME Trans. 18, 471 (2013)CrossRefGoogle Scholar
  10. 10.
    A. Erturk, G. Delporte, Smart Mater. Struct. 20, 125013 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    L. Cen, A. Erturk, Bioinspiration Biomimet. 8, 016006 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Z. Wang, G. Hang, J. Li, Y. Wang, K. Xiao, Sensors Actuators A: Phys. 144, 354 (2008)CrossRefGoogle Scholar
  13. 13.
    P.R. Byopadhyay, Oceanic Eng., IEEE J. 30, 109 (2005)CrossRefGoogle Scholar
  14. 14.
    D. Roper, S. Sharma, R. Sutton, P. Culverhouse, Proc. Inst. Mech. Eng., Part M: J. Eng. Maritime Envir. 225, 77 (2011)Google Scholar
  15. 15.
    O. Barannyk, B.J. Buckham, P. Oshkai, J. Fluids Struct. 28, 152 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Nagata, S. Park, A. Ming, M. Shimojo, Adv. Intell. Mechatronics, AIM 2008. IEEE/ASME Int. Conf. IEEE (2008)Google Scholar
  17. 17.
    A. Ming, S. Park, Y. Nagata, M. Shimojo, Robotics Automation, ICRA’09. IEEE Int. Conf. IEEE (2009)Google Scholar
  18. 18.
    J. Shintake, A. Ming, M. Shimojo, Intell. Robots Syst. (IROS), IEEE/RSJ Int. Conf. IEEE (2010)Google Scholar
  19. 19.
    J.E. Sader, J. Appl. Phys. 84, 64 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    C.A. Van Eysden, J.E. Sader, J. Appl. Phys. 101, 044908 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    J.W. Chon, P. Mulvaney, J.E. Sader, J. Appl. Phys. 87, 3978 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    C.A. Van Eysden, J.E. Sader, J. Appl. Phys. 100, 114916 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    P. Brunetto, L. Fortuna, S. Graziani, S. Strazzeri, Smart Mater. Struct. 17, 025029 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    S. Shahab, A. Erturk, SPIE Smart Struct. Mater.+ Nondestructive Evaluation Health Monitoring. Int. Soc. for Optics Photonics (2014)Google Scholar
  25. 25.
    Shahab, S. Erturk, A. ASME 2014 Conf. Smart Mater., Adaptive Struct. Intell. Syst. Amer. Soc.Mech. Eng. (2014)Google Scholar
  26. 26.
    J. Morison, J. Johnson, S. Schaaf, J. Pet. Technol. 2, 149 (1950)CrossRefGoogle Scholar
  27. 27.
    J. Morison, J.W. Johnson, M.P. O’Brien, Coastal Eng. Proc. 1, 25 (1953)Google Scholar
  28. 28.
    J. Graham, J. Fluid Mech. 97, 331 (1980)ADSCrossRefGoogle Scholar
  29. 29.
    T. Sarpkaya, J. Fluid Mech. 165, 61 (1986)Google Scholar
  30. 30.
    E. Tuck, J. Eng. Math. 3, 29 (1969)MathSciNetCrossRefGoogle Scholar
  31. 31.
    A.L. Facci, M. Porfiri, J. Fluids Struct. 38, 205 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Cha, H. Kim, M. Porfiri, Smart Mater. Struct. 22, 115026 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    S. Shahab, A. Erturk, SPIE Smart Struct. Mater.+ Nondestructive Evaluation Health Monitoring. Int. Soc. Optics Photonics (2015)Google Scholar
  34. 34.
    S. Shahab, A. Erturk, Proc. ASME 2015 IDETC 27th Biennial Conf. Mech. Vib. Noise, Boston, MA, 2 August (2015)Google Scholar
  35. 35.
    A.H. Nayfeh, Perturbation methods (John Wiley & Sons, 2008)Google Scholar
  36. 36.
    S. Leadenham, A. Erturk, J. Sound Vib. 333, 6209 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    S. Leadenham, A. Erturk, Nonlinear Dyn. (in press) (2014)Google Scholar
  38. 38.
    G. Taylor, Proc. Royal Soc. Lond Ser. Math. Phys. Sci. 209, 447 (1951)ADSCrossRefGoogle Scholar
  39. 39.
    G. Taylor, Proc. Royal Soc. Lond Ser. A. Math. Phys. Sci. 211, 225 (1952)ADSCrossRefGoogle Scholar
  40. 40.
    M. Lighthill, J. Fluid Mech. 9, 305 (1960)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    M. Lighthill, Ann. Rev. Fluid Mech. 1, 413 (1969)ADSCrossRefGoogle Scholar
  42. 42.
    L. Cen, Fish-like locomotion using flexible piezoelectric composites for untethered aquatic robotics, Georgia Inst. Technol. (2012)Google Scholar
  43. 43.
    M.L. Hill, J. Fluid Mech. 44, 256 (1970)Google Scholar
  44. 44.
    M. Lighthill, J. Fluid Mech. 44 265Google Scholar
  45. 45.
    W. Chu, DTMB, Contract NObs-86396 (X), Southwest Res. Inst., San Antonio, Texas (1963)Google Scholar
  46. 46.
  47. 47.
    S. Anton, A. Erturk, D. Inman, Smart Mater. Struct. 19, 115021 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    L. Meirovitch, Fundamentals Vib. (Wavel Press, 2010)Google Scholar
  49. 49.
    K. Wolf, O. Gottlieb, J. Appl. Phys. 91, 4701 (2002)ADSCrossRefGoogle Scholar
  50. 50.
    T. Usher, A. Sim, J. Appl. Phys. 98 (2005)Google Scholar
  51. 51.
    S.C. Stanton, A. Erturk, B.P. Mann, E.H. Dowell, D.J. Inman, J. Intell. Mater. Syst. Struct. 23, 183 (2012)CrossRefGoogle Scholar
  52. 52.
    M. Aureli, M.E. Basaran, M. Porfiri, J. Sound Vib. 331, 1624 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    K. Abdelnour, E. Mancia, S.D. Peterson, M. Porfiri, Smart Mater. Struct. 18, 085006 (2009)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • S. Shahab
    • 1
  • D. Tan
    • 1
  • A. Erturk
    • 1
  1. 1.G.W. Woodruff School of Mechanical Engineering, GE Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations