Taming instabilities in power grid networks by decentralized control

  • B. Schäfer
  • C. Grabow
  • S. Auer
  • J. Kurths
  • D. Witthaut
  • M. Timme
Regular Article
Part of the following topical collections:
  1. Health, Energy & Extreme Events in a Changing Climate

Abstract

Renewables will soon dominate energy production in our electric power system. And yet, how to integrate renewable energy into the grid and the market is still a subject of major debate. Decentral Smart Grid Control (DSGC) was recently proposed as a robust and decentralized approach to balance supply and demand and to guarantee a grid operation that is both economically and dynamically feasible. Here, we analyze the impact of network topology by assessing the stability of essential network motifs using both linear stability analysis and basin volume for delay systems. Our results indicate that if frequency measurements are averaged over sufficiently large time intervals, DSGC enhances the stability of extended power grid systems. We further investigate whether DSGC supports centralized and/or decentralized power production and find it to be applicable to both. However, our results on cycle-like systems suggest that DSGC favors systems with decentralized production. Here, lower line capacities and lower averaging times are required compared to those with centralized production.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Edenhofer, R. Madruga, Y. Sokona, K. Seyboth (2011)Google Scholar
  2. 2.
    B. für Wirtschaft und Energie, Erneuerbare Energien im Jahr 2014 (2015), http://www.erneuerbare-energien.de/
  3. 3.
    T. Ackermann, G. Andersson, L. Söder, Electric Power Systems Research 57, 195 (2001)CrossRefGoogle Scholar
  4. 4.
    P. Kotler, Adv. Consumer Res. 13, 510 (1986)Google Scholar
  5. 5.
    J.A. Turner, Science 285, 687 (1999)CrossRefGoogle Scholar
  6. 6.
    50 Hertz, Amprion, T. TSO, TransnetBW, Netzentwicklungplan Strom (2012), http://www.netzentwicklungsplan.de
  7. 7.
    G. Boyle, Renewable Energy (Oxford University Press, Oxford, 2004)Google Scholar
  8. 8.
    D. Heide, L.V. Bremen, M. Greiner, C. Hoffmann, M. Speckmann, S. Bofinger, Renewable Energy 35, 2483 (2010)CrossRefGoogle Scholar
  9. 9.
    P. Milan, M. Wächter, J. Peinke, Phys. Rev. Lett. 110, 138701 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Bundesministerium für Wirtschaft und Energie (BMWi), Ein Strommarkt für die Energiewende (2014)Google Scholar
  11. 11.
    M. Jansen, C. Richts, N. Gerhardt, Strommarkt-Flexibilisierung – Hemmnisse und Lösungskonzepte (2015)Google Scholar
  12. 12.
    D. Butler, Nature 445, 586 (2007)CrossRefGoogle Scholar
  13. 13.
    M.H. Albadi, E.F. El-Saadany, Electr. Power Syst. Res. 78, 1989 (2008)CrossRefGoogle Scholar
  14. 14.
    P. Palensky, D. Dietrich, Ind. Informatics, IEEE Transactions on 7, 381 (2011)CrossRefGoogle Scholar
  15. 15.
    J.K. Kok, C.J. Warmer, I. Kamphuis, Proc. Fourth Int. joint Conf. Autonomous Agents Multiagent Syst. (ACM, 2005), p. 75Google Scholar
  16. 16.
    L. Hofmann, M. Sonnenschein, Smart Nord Final Rep. (2015), http://smartnord.de/downloads/SmartNordFinalReport.pdf
  17. 17.
    G.N. Ericsson, Power Delivery, IEEE Transactions 25, 1501 (2010)CrossRefGoogle Scholar
  18. 18.
    X. Fang, S. Misra, G. Xue, D. Yang, Commun. Surv. & Tutorials, IEEE 14, 944 (2012)CrossRefGoogle Scholar
  19. 19.
    E.Y. GmbH, Cost-benefit Anal. Comprehensive Use Smart Metering Syst. – Final Rep. – Summary (2013)Google Scholar
  20. 20.
    F.C. Schweppe, Frequency Adaptive, Power-Energy Re-scheduler (1982), US Patent 4,317,049Google Scholar
  21. 21.
    J.A. Short, D.G. Infield, L.L. Freris, Power Syst. IEEE Transactions 22, 1284 (2007)CrossRefGoogle Scholar
  22. 22.
    T. Walter, Smart Grid neu gedacht: Ein Lösungsvorschlag zur Diskussion in VDE—ETG (2014), http://www.vde.com/de/fg/ETG/Pbl/MI/2014-01/Seiten/Homepage.aspx
  23. 23.
    B. Schäfer, M. Matthiae, M. Timme, D. Witthaut, New J. Phys. 17, 015002 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    G. Filatrella, A.H. Nielsen, N.F. Pedersen, Eur. Phys. J. B-Condensed Matter Complex Syst. 61, 485 (2008)CrossRefGoogle Scholar
  25. 25.
    D. Witthaut, M. Timme, New J. Phys. 14, 083036 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    M. Rohden, A. Sorge, D. Witthaut, M. Timme, Chaos: An Interdisciplinary J. Nonlinear Sci. 24, 013123 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    F.D. M., C.F. , Bullo, Proc. Natl. Acad. Sci. 110, 2005 (2013)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    A.E. Motter, S.A. Myers, M. Anghel, T. Nishikawa, Nature Phys. 9, 191 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    P.J. Menck, J. Heitzig, J. Kurths, H.J. Schellnhuber, Nature Commun. 5, (2014)Google Scholar
  30. 30.
    M. Rohden, A. Sorge, M. Timme, D. Witthaut, Phys. Rev. Lett. 109, 064101 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    J. Machowski, J. Bialek, J. Bumby, Power System Dynamics: Stability and Control (John Wiley & Sons, 2011)Google Scholar
  32. 32.
    A.R. Bergen, D.J. Hill, Power Apparatus and Syst. IEEE Trans. 100, 25 (1981)CrossRefGoogle Scholar
  33. 33.
    D.V. Hertem, J. Verboomen, K. Purchala, R. Belmans, W.L. Kling, AC and DC Power Transmission, 2006. ACDC 2006. The 8th IEEE Int. Conference (IET, 2006), p. 58Google Scholar
  34. 34.
    D. Manik, D. Witthaut, B. Schäfer, M. Matthiae, A. Sorge, M. Rohden, E. Katifori, M. Timme, Eur. Phys. J. Special Topics 223, 2527 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    R.D. Driver, Ordinary and Delay Differential Equations (Springer, 1977), p. 225Google Scholar
  36. 36.
    M.R. Roussel, Delay-Differential Equations (2005)Google Scholar
  37. 37.
    W.R. Inc., Math. Champaign Illinois (2014)Google Scholar
  38. 38.
    K. Gu, J. Chen, V.L. Kharitonov, Stability of Time-delay Syst. (Springer Science & Business Media, 2003)Google Scholar
  39. 39.
    P.J. Menck, J. Heitzig, N. Marwan, J. Kurths, Nature Phys. 9, 89 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    P. Schultz, J. Heitzig, J. Kurths, New J. Phys. 16, 125001 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    ENTSO-E, Network code on requirements for grid connection applicable to all generators (rfg) (2013), https://www.entsoe.eu/major-projects/network-code-development/requirements-for-generators/
  42. 42.
    B. Naduvathuparambil, M. Valenti, A. Feliachi et al., Southeastern Symposium Syst. Theory 34 (Citeseer, 2002), p. 118Google Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • B. Schäfer
    • 1
  • C. Grabow
    • 2
    • 10
  • S. Auer
    • 2
    • 3
  • J. Kurths
    • 2
    • 3
    • 4
    • 5
  • D. Witthaut
    • 6
    • 7
  • M. Timme
    • 1
    • 8
    • 9
  1. 1.Network Dynamics, Max-Planck-Institute for Dynamics and Self-Organization (MPIDS)GöttingenGermany
  2. 2.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  3. 3.Department of PhysicsHumboldt University BerlinBerlinGermany
  4. 4.Institute of Complex Systems and Mathematical Biology, University of AberdeenAberdeen AB24 3FXUK
  5. 5.Department of Control TheoryNizhny Novgorod State UniversityNizhny NovgorodRussia
  6. 6.Forschungszentrum Jülich, Institute for Energy and Climate Research (IEK-Systems Analysis and Technology Evaluation)JülichGermany
  7. 7.Institute for Theoretical Physics, University of CologneKölnGermany
  8. 8.Institute for Nonlinear Dynamics, Faculty of Physics, University of GöttingenGöttingenGermany
  9. 9.Department of PhysicsTechnical University of DarmstadtDarmstadtGermany
  10. 10.Department of Mechanical and Aerospace EngineeringNew York University Tandon, School of EngineeringNew YorkUSA

Personalised recommendations