Advertisement

The European Physical Journal Special Topics

, Volume 225, Issue 10, pp 1879–1891 | Cite as

Discretized kinetic theory on scale-free networks

  • Maria Letizia Bertotti
  • Giovanni ModaneseEmail author
Regular Article Theory
Part of the following topical collections:
  1. Complex, Inter-networked Economic and Social Systems

Abstract

The network of interpersonal connections is one of the possible heterogeneous factors which affect the income distribution emerging from micro-to-macro economic models. In this paper we equip our model discussed in [1, 2] with a network structure. The model is based on a system of n differential equations of the kinetic discretized-Boltzmann kind. The network structure is incorporated in a probabilistic way, through the introduction of a link density P(α) and of correlation coefficients P(β|α), which give the conditioned probability that an individual with α links is connected to one with β links. We study the properties of the equations and give analytical results concerning the existence, normalization and positivity of the solutions. For a fixed network with P(α) = c q , we investigate numerically the dependence of the detailed and marginal equilibrium distributions on the initial conditions and on the exponent q. Our results are compatible with those obtained from the Bouchaud-Mezard model and from agent-based simulations, and provide additional information about the dependence of the individual income on the level of connectivity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.L. Bertotti, G. Modanese, Physica A 390, 3782 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    M.L. Bertotti, G. Modanese, Eur. Phys. J. B. 85, 261 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    F. Schweitzer, G. Fagiolo, D. Sornette, F. Vega-Redondo, A. Vespignani, D.R. White, Science 325, 422 (2009)ADSMathSciNetGoogle Scholar
  4. 4.
    L.A. Braunstein, P.A. Macri, J.R. Iglesias, Physica A 392, 1788 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    A. Chatterjee, Eur. Phys. J. B 67, 593 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    R. Bustos-Guajardo, C.F. Moukarzel, J. Stat. Mech. 2012, P12009 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    J.R. Iglesias, S. Goncalves, S. Pianegonda, J.L. Vega, G. Abramson, Physica A 327, 12 (2003)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    S.R. Gusman, M.F. Laguna, J.R. Iglesias, Wealth distribution in a network with correlations between links and success, in Econophysics of Wealth Distributions, edited by A. Chatterjee, S. Yarlagadda, B.K. Chakrabarti (Springer, 2005), p. 149Google Scholar
  9. 9.
    R. Coelho, Z. Néda, J.J. Ramasco, M.A. Santos, Physica A 353, 515 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    M.B. Hu, W.X. Wang, R. Jiang, Q.S. Wu, B.H. Wang, Y.H. Wu, Eur. Phys. J. B 53, 273 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    G. Lee, G.II Kim, Physica A 383, 677 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    D. Garlaschelli, M.I. Loffredo, Physica A 338, 113 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    D. Garlaschelli, M.I. Loffredo, J. Phys. A: Math. Theor. 41, 224018 (2008)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    T. Di Matteo, T. Aste, S.T. Hyde, Exchanges in complex networks: income and wealth distributions, [arXiv:cond-mat/0310544] (2003)
  15. 15.
    M. Boguna, R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 90, 028701 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    M.A. Serrano, M. Boguna, R. Pastor-Satorras, A. Vespignani, Correlations in complex networks, in Large Scale Structure and Dynamics of Complex Networks: from Information Technology to Finance and Natural Sciences, edited by G. Caldarelli, A. Vespignani (World Scientific, 2007), p. 35Google Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  1. 1.Faculty of Science and Technology, Free University of Bozen-BolzanoBolzanoItaly

Personalised recommendations