Long-term impacts of battery electric vehicles on the German electricity system

  • H.U. Heinrichs
  • P. Jochem
Regular Article
Part of the following topical collections:
  1. Health, Energy & Extreme Events in a Changing Climate


The emerging market for electric vehicles gives rise to an additional electricity demand. This new electricity demand will affect the electricity system. For quantifying those impacts a model-based approach, which covers long-term time horizons is necessary in order to consider the long lasting investment paths in electricity systems and the market development of electric mobility. Therefore, we apply a bottom-up electricity system model showing a detailed spatial resolution for different development paths of electric mobility in Germany until 2030. This model is based on a linear optimization which minimizes the discounted costs of the electricity system. We observe an increase of electricity exchange between countries and electricity generated by renewable energy sources. One major result turns out to be that electric vehicles can be integrated in the electricity system without increasing the system costs when a controlled (postponing) charging strategy for electric vehicles is applied. The impact on the power plant portfolio is insignificant. Another important side effect of electric vehicles is their substantial contribution to decreasing CO2 emissions of the German transport sector. Hence, electric mobility might be an integral part of a sustainable energy system of tomorrow.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Gnann, P. Ploetz, A. Kuehn, M. Wietschel, Transportation Res. Part A: Policy Pract. 77, 95 (2015)CrossRefGoogle Scholar
  2. 2.
    B. Nykvist, M. Nilsson, Nat. Climate Change 5, 329 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    S. Babrowski, H. Heinrichs, P. Jochem, J. Power Sources 255, 283 (2014)CrossRefGoogle Scholar
  4. 4.
    Egbue, O., Long, S., Energy Policy 48, 717 (2012)CrossRefGoogle Scholar
  5. 5.
    T.R. Hawkins, O.M. Gausen, A.H. Strømman, J. Life Cycle Assessment 17, 997 (2012)CrossRefGoogle Scholar
  6. 6.
    T.R. Hawkins, B. Singh, G. Majeau-Betez, H. Strømman, J. Ind. Ecol. 17, 53 (2012)CrossRefGoogle Scholar
  7. 7.
    J. Link, Elektromobilitaet und erneuerbare Energien: Lokal optimierter Einsatz von netzgekoppelten Fahrzeugen (Shaker Verlag, Aachen, 2012)Google Scholar
  8. 8.
    F. Hacker, R. Harthan, F. Matthes, W. Zimmer, Environmental impacts and impact on the electricity market of a large scale introduction of electric cars in Europe – Critical Review of Literature (ETC/ACC Technical Paper 2009/4, 2009)Google Scholar
  9. 9.
    P. Jochem, S. Babrowski, W. Fichtner, Transportation Res. A: Policy Pract. 78, 68 (2015)Google Scholar
  10. 10.
    J. Kiviluoma, P. Meibom, Energy 35, 1244 (2010)CrossRefGoogle Scholar
  11. 11.
    S. Babrowski, Bedarf und Verteilung elektrischer Tagesspeicher im zuknftigen deutschen Energiesystem (KIT Scientific Publishing, Karlsruhe, 2015)Google Scholar
  12. 12.
    R. Follmer (ed.), Mobilitaet in Deutschland 2002, (infas – Institut fr angewandte Sozialwissenschaft / Bundesministerium fr Verkehr, Bau und Stadtentwicklung, Berlin, 2002)Google Scholar
  13. 13.
    A. Kihm, S. Trommer, M. Mehlin, The 91st annual meeting of the transportation research board (TRB) (Washington, 13–17 January, 2013)Google Scholar
  14. 14.
    S. Trommer, A. Kihm, P. Hebes, M. Mehlin, European Transport Conference (ETC) (Glasgow, 2010)Google Scholar
  15. 15.
    H.U. Heinrichs, Analyse der langfristigen Auswirkungen von Elektromobilitaet auf das deutsche Energiesystem im europaeischen Energieverbund (KIT Scientific Publishing, Karlsruhe, 2013)Google Scholar
  16. 16.
    Eurostat, NUTS – Nomenclature of territorial units for statistics,
  17. 17.
    R.C. Green II, L. Wang, M. Alam, Renewable Sustainable Energy Rev. 15, 544 (2011)CrossRefGoogle Scholar
  18. 18.
    T. Pollok, C. Matrose, T. Dederichs, A. Schnettler, E. Szczechowicz, Proc. 21st Intern. Conf. Exhib. Electr. Distrib. (CIRED, Frankfurt, Germany, 2011)Google Scholar
  19. 19.
    R.A. Waraich, M.D. Galus, C. Dobler, M. Balmer, G. Andersson, K.W. Axhausen, Transportation Res. Emerging Technol. 28, 74–86 (2013)CrossRefGoogle Scholar
  20. 20.
    BMWi and BMU, Energiekonzept fr eine umweltschonende, zuverlaessige und bezahlbare Energieversorgung (2010),
  21. 21.
    S. Pfahl, P. Jochem, W. Fichtner, Proceedings of EVS27 Conference (Barcelona, Spain, 2013)Google Scholar
  22. 22.
    European Commission, Verordnung (EG) Nr. 443/2009 des Europaeischen Parlaments und des Rates vom 23. April 2009 zur Festsetzung von Emissionsnormen fuer neue Personenkraftwagen im Rahmen des Gesamtkonzepts der Gemeinschaft zur Verringerung der CO2-Emissionen von Personenkraftwagen und leichten Nutzfahrzeugen (2009)Google Scholar
  23. 23.
    C. Thiel, J. Schmidt, A. Van Zyl, E. Schmid, Transport Res. A.-Policy Pract. 63, 25 (2014)CrossRefGoogle Scholar
  24. 24.
  25. 25.
    J. Rosen, Dissertation, Universitaet Karlsruhe (TH) (Karlsruhe, 2007)Google Scholar
  26. 26.
    C. Böhringer, T.F. Rutherford, J. Econ. Dyn. & Control 33, 1648 (2009)CrossRefGoogle Scholar
  27. 27.
    A. Eßer-Frey, Analyzing the regional long-term development of the German power system using a nodal pricing approach (KIT Scientific Publishing, Karlsruhe, 2012)Google Scholar
  28. 28.
    ENTSO-E, ENTSO-E Interconnected Network Grid Map (2008)Google Scholar
  29. 29.
    EnLAG, BGBl 1, 2870 (2009)Google Scholar
  30. 30.
  31. 31.
  32. 32.
    L. Boerjeson, M. Hoejer, K.-H. Dreborg, T. Ekvall, G. Finnveden, Future 38, 723 (2006)CrossRefGoogle Scholar
  33. 33.
    T. Gnann, P. Ploetz, Renewable Sustainable Energy Rev. 47, 783 (2015)CrossRefGoogle Scholar
  34. 34.
    T. Ketelaer, T. Kaschub, P. Jochem, W. Fichtner, Int. J. Environ. Sci. Technol. 11, 2169 (2014)CrossRefGoogle Scholar
  35. 35.
    BMVBS, Mobilitaet in Deutschland 2008 (2010),
  36. 36.
    L. Linen, A. Schulz, S. Mischinger, H. Maas, C. Guenther, O. Weinmann, et al., Netzintegration von Fahrzeugen mit elektrifizierten Antriebssystemen in bestehende und zukuenftige Energieversorgungsstrukturen (FZJ Verlag, Advances in Systems Analysis 1 (Bd. 15), Juelich, 2012)Google Scholar
  37. 37.
    J. Swan, in Practical Financial Modelling, 2nd edn. (CIMA Publishing, Oxford, 2008)Google Scholar
  38. 38.
    M. Rohden, A. Sorge, D. Witthaut, M. Timme, Chaos 013123 (2014)Google Scholar
  39. 39.
    A. Gajduk, M. Todorovski, J. Kurths, L. Kocarev, New J. Phys. 16 (2014)Google Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  1. 1.Forschungszentrum Jülich, Institute for Energy and Climate Research – System Analysis and Technology Evaluation (IEK-STE)JülichGermany
  2. 2.Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP)KarlsruheGermany

Personalised recommendations