Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 17–18, pp 3361–3377 | Cite as

Insects have hairy eyes that reduce particle deposition

  • G.J. Amador
  • F. Durand
  • W. Mao
  • S. Pusulri
  • H. Takahashi
  • V.-T. Nguyen
  • I. Shimoyama
  • A. Alexeev
  • D.L. HuEmail author
Regular Article Applied Physics and Robotics
Part of the following topical collections:
  1. Dynamics of Animal Systems

Abstract

An insect’s eyes may make up to 40% of its body’s surface, and are in danger of being coated by foreign particles such as dust and pollen. To protect them, several insect species possess an array of ocular hairs evenly spaced between each photoreceptor unit. Although these hairs have been observed for over 50 years, their purpose remains a mystery. In this study, we elucidate the function of ocular hairs using a combination of experiments, numerical simulation and micro-fabrication. We measure the eyes of 18 species of insects and find that the length of their ocular hairs is equal to their spacing. We conduct wind tunnel experiments using both an insect eye mimic and an at-scale fabricated micro-pillar array of the same dimensions as the insect eye. Our experiments and simulations show that ocular hairs reduce airflow at the eye surface by up to 90%. We conclude that ocular hairs act similarly to mammalian eyelashes: as insects fly, ocular hairs deflect incoming air and create a zone of stagnant air. Airflow and particle deposition are reduced dramatically, while light is only minimally occluded. Micro-scale ocular hairs may find application in the deployment of sensors outdoors, for which accumulation of airborne dust and pollen has no current solution.

Keywords

Wind Tunnel European Physical Journal Special Topic Ocular Surface Wind Tunnel Experiment Micro Electro Mechanical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.V. Srinivasan, S. Zhang, Ann. Rev. Neurosci. 27, 679 (2004)CrossRefGoogle Scholar
  2. 2.
    L.F. Tammero, M.H. Dickinson, J. Exper. Biol. 205, 2785 (2002)Google Scholar
  3. 3.
    A. Sourakov, Florida Entomologist 94, 367 (2011)CrossRefGoogle Scholar
  4. 4.
    H. Hinton, Roy Entomol. Soc. London Symp. (1970)Google Scholar
  5. 5.
    M.F. Land, R.D. Fernald, Ann. Rev. Neurosci. 15, 1 (1992)CrossRefGoogle Scholar
  6. 6.
    W.H. Miller, G.D. Bernard, J.L. Allen, Science 162, 760 (1968)ADSCrossRefGoogle Scholar
  7. 7.
    V. Neese, Z. Vergleichende Physiol. 49, 543 (1965)CrossRefGoogle Scholar
  8. 8.
    V. Neese, Z. Vergleichende Physiol. 52, 149 (1966)CrossRefGoogle Scholar
  9. 9.
    H.-W. Honegger, Cell Tissue Res. 182, 281 (1977)CrossRefGoogle Scholar
  10. 10.
    M.M. Perry, J. Morphol. 124, 249 (1968)CrossRefGoogle Scholar
  11. 11.
    F.G. Barth, Curr. Opin. Neurobiol. 14, 415 (2004)CrossRefGoogle Scholar
  12. 12.
    J. Casas, T. Steinmann, G. Krijnen, J. Royal Soc. Interface 7, 1487 (2010)CrossRefGoogle Scholar
  13. 13.
    R. Fettiplace, C.M. Hackney, Nat. Rev. Neurosci. 7, 19 (2006)CrossRefGoogle Scholar
  14. 14.
    A. Bejan, J. Heat Transfer (Transactions ASME, Ser. C) 112, 662 (1990)CrossRefGoogle Scholar
  15. 15.
    A. Battisti, G. Holm, B. Fagrell, S. Larsson, Ann. Rev. Entomol. 56, 203 (2011)CrossRefGoogle Scholar
  16. 16.
    M.S. Mooring, W.M. Samuel, Behaviour 135, 693 (1998)CrossRefGoogle Scholar
  17. 17.
    D.I. Rubenstein, M. Koehl, Am. Naturalist 981 (1977)Google Scholar
  18. 18.
    M. Lippmann, D. Yeates, R. Albert, Br. J. Ind. Med. 37, 337 (1980)Google Scholar
  19. 19.
    S. Vogel, J. Insect Physiol. 29, 597 (1983)CrossRefGoogle Scholar
  20. 20.
    C. Loudon, E.C. Davis, J. Chem. Ecol. 31, 1 (2005)CrossRefGoogle Scholar
  21. 21.
    K. Sato, H. Takahashi, M.-D. Nguyen, K. Matsumoto, I. Shimoyama, 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), 21 (2013)Google Scholar
  22. 22.
    G.J. Amador, et al., J. Royal Soc. Interface 12, 20141294 (2015)CrossRefGoogle Scholar
  23. 23.
    J.B. Benoit,Aestivation (publisher Springer, 2010), p. 209Google Scholar
  24. 24.
    G.J. Amador, D.L. Hu, J. Exper. Biol. 218(20), 3164 (2015)CrossRefGoogle Scholar
  25. 25.
    M. Streinzer, A. Brockmann, N. Nagaraja, J. Spaethe, PloS One 8, 57702 (2013)ADSCrossRefGoogle Scholar
  26. 26.
  27. 27.
    A. Karawath, User:Aka/Images/Animals. https://commons.wikimedia.org/wiki/User:Aka/Images/Animals/wiki/User:Aka/Images/Animals
  28. 28.
    D. Coetzee, https://commons.wikimedia.org/wiki/File:Lucilia_sericata_on_doorknob_-_detail_of_fly.jpg/wiki/File:Lucilia_sericata_on_doorknob_-_detail_of_fly.jpg
  29. 29.
  30. 30.
  31. 31.
  32. 32.
    P. Waters, http://www.shutterstock.com/pic-77748943/stock-photo-western-honey-bee-in-flight-with-sharp-focus-on-its-head-isolated-on-white.html? src=tQhZhOTnaTzj6X4vDyIFrA-1-24/pic-77748943/stock-photo-western-honey-bee-in-flight-with-sharp-focus-on-its-head-isolated-on-white.html? src=tQhZhOTnaTzj6X4vDyIFrA-1-24
  33. 33.
    Karlsson, C. Musca domestica @ 5X. https://www.flickr.com/photos/conkar/6792723054/
  34. 34.
    Diptera.info. Chrysotoxum intermedium. http://www.diptera.info/forum/ attachments/ev-chrysotoxum-intermedium.jpg/forum/ attachments/ev-chrysotoxum-intermedium.jpg
  35. 35.
    wiseGEEK. http://www.wisegeekhealth.com what-is-an-occipital-lymph-node. htm#very-close-view-of-mosquito-on-human-skinwhat-is-an-occipital-lymph-node. htm#very-close-view-of-mosquito-on-human-skin
  36. 36.
    A.R. Parker, Z. Hegedus, R.A. Watts, Proc. Royal Soc. London. Series B: Biol. Sci. 265, 811 (1998)CrossRefGoogle Scholar
  37. 37.
    S.D. Carlson, C. Chi, Cell Tissue Res. 149, 21 (1974)CrossRefGoogle Scholar
  38. 38.
    D.G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, Proc. Royal Soc. B: Biological Sci. 273, 661 (2006)CrossRefGoogle Scholar
  39. 39.
    A. Oliva, A new species Oxelytrum Gistel (Coleoptera, Silphidae) from southern Argentina, with a key to the species genus. ZooKeys 1 (2012)Google Scholar
  40. 40.
    S. Fischer, C.H. Mueller, V.B. Meyer-Rochow, Visual Neurosci. 28, 295 (2011)CrossRefGoogle Scholar
  41. 41.
    M.W. Szyndler, K.F. Haynes, M.F. Potter, R.M. Corn, C. Loudon, J. Royal Soc. Interface 10, 20130174 (2013)CrossRefGoogle Scholar
  42. 42.
    T. Bourguignon, Y. Roisin, ZooKeys, 55 (2011)Google Scholar
  43. 43.
    S. Zonstein, Y.M. Marusik, (Araneae, Palpimanidae) ZooKeys, 27 (2013)Google Scholar
  44. 44.
  45. 45.
    M. Smith, Part III – Human Eyes and Insect Eyes: A 3D modelling article. http://www.microscopy-uk.org.uk/mag/artjun10/mol%-eyes1.html/mag/artjun10/mol%-eyes1.html
  46. 46.
    A. Osterrieder, http://www.plantcellbiology.com 2012 02
  47. 47.
    California Department Food Agriculture Novakia miloi kerr http://www.cdfa. ca.gov/plant/ppd/Lucid/Novakia/key/Novakia/Media/Html/N_miloi.htm/plant/ppd/Lucid/Novakia/key/Novakia/Media/Html/N_miloi.htm
  48. 48.
    The University Virginia Virtual Lab. http://www.virlab.virginia.edu/nanoscience_class Nanoscience_class.htm Lab/nanoscience_class Nanoscience_class.htm Lab
  49. 49.
  50. 50.
    The University Texas at Dallas Department Geosciences. https://www.utdallas.edu/ pujana/sem/ant1.htm.pujana/sem/ant1.htm.
  51. 51.
    Euchoo. Boliaology Part 01. http://euchoo.net/blog.bk/Boliaology-Part01
  52. 52.
    Biology Department at Swarthmore College. The Robert Savage Image Award At Swarthmore College. https://savageimageaward.wordpress.com/
  53. 53.
  54. 54.
  55. 55.
  56. 56.
    S. Vogel, J. Exper. Biol. 44, 567 (1966)Google Scholar
  57. 57.
    H. Davies, C.A. Butler (Rutgers University Press, 2008)Google Scholar
  58. 58.
    S. Succi (Oxford University Press, 2001)Google Scholar
  59. 59.
    C.K. Aidun, J.R. Clausen, Ann. Rev. Fluid Mech. 42, 439 (2010)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    A.J.C. Ladd, R. Verberg, J. Statist. Phys. 104, 1191 (2001)ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    Z.G. Mills, W. Mao, A. Alexeev, Trends BioTechnol. 31, 246 (2013)CrossRefGoogle Scholar
  62. 62.
    E. Gauger, H. Stark, Physical Rev. E 74 (2006)Google Scholar
  63. 63.
    H. Jian, A.V. Vologodskii, T. Schlick, J. Comp. Phys. 136, 168 (1997)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    C.S. Peskin, Acta Numerica 11, 479 (2002)MathSciNetCrossRefGoogle Scholar
  65. 65.
    M. Bouzidi, M. Firdaouss, P. Lallemand, Phys. Fluids 13, 3452 (2001)ADSCrossRefGoogle Scholar
  66. 66.
    R. Ghosh, G.A. Buxton, O.B. Usta, A.C. Balazs, A. Alexeev, Langmuir 26, 2963 (2009)CrossRefGoogle Scholar
  67. 67.
    J. Branscomb, A. Alexeev, Soft Matter 6, 4066 (2010)ADSCrossRefGoogle Scholar
  68. 68.
    C. Semmler, A. Alexeev, Phys. Rev. E 84, 066303 (2011)Google Scholar
  69. 69.
    Z.G. Mills, B. Aziz, A. Alexeev, Soft Matter 8, 11508 (2012)ADSCrossRefGoogle Scholar
  70. 70.
    H. Takahashi, N.M. Dung, K. Matsumoto, I. Shimoyama, J. Micromech. Microeng. 22, 055015 (2012)Google Scholar
  71. 71.
    H. Takahashi, K. Matsumoto, I. Shimoyama, Measur. Sci. Technol. 24, 055304 (2013)ADSCrossRefGoogle Scholar
  72. 72.
    M. Gel, I. Shimoyama, J. Micromech. Microeng. 14, 423 (2004)ADSCrossRefGoogle Scholar
  73. 73.
    N. Thanh-Vinh, H. Takahashi, K. Matsumoto, I. Shimoyama, Sensors Actuators A: Physical (2014)Google Scholar
  74. 74.
    C. Chi, S.D. Carlson, Cell Tissue Res. 166, 353 (1976)CrossRefGoogle Scholar
  75. 75.
    L. Sedda, et al., Proc. Royal Soc. B: Biological Sci. 279, 2354 (2012)CrossRefGoogle Scholar
  76. 76.
    J.H. Fewell, Behavioral Ecol. Sociobiol. 22, 401 (1988)CrossRefGoogle Scholar
  77. 77.
  78. 78.
    M.L. Winston, The Biology of the honey bee (Harvard University Press, 1991)Google Scholar
  79. 79.
    T. Schneider, M. Bohgard, Indoor Air 15, 215 (2005)CrossRefGoogle Scholar
  80. 80.
    T.L. Bergman, F.P. Incropera, A.S. Lavine, D.P. DeWitt, Fundamentals Heat and Mass Transfer (John Wiley, Sons, 2011)Google Scholar
  81. 81.
    H. Schlichting, K. Gersten, Boundary-layer theory (Springer, 2000)Google Scholar
  82. 82.
    H. Brinkman, Appl. Scientific Res. 1, 27 (1949)CrossRefGoogle Scholar
  83. 83.
    R. Larson, J. Higdon, J. Fluid Mech. 166, 449 (1986)ADSCrossRefGoogle Scholar
  84. 84.
    E. Pacini, M. Hesse, Flora-Morphology, Distribution, Funct. Ecol. Plants 200, 399 (2005)CrossRefGoogle Scholar
  85. 85.
    L. Guglielmini, A. Kushwaha, E.S. Shaqfeh, H.A. Stone, Phys. Fluids 24, 123601 (2012)Google Scholar
  86. 86.
    J.-H. Dirks, D. Taylor, J. Exper. Biol. 215, 1502 (2012)CrossRefGoogle Scholar
  87. 87.
    E. De Langre, Ann. Rev. Fluid Mech. 40, 141 (2008)ADSMathSciNetCrossRefGoogle Scholar
  88. 88.
    J.A. Humphrey, F.G. Barth, Adv. Insect Physiol. 34, 1 (2007)CrossRefGoogle Scholar
  89. 89.
    H. Takahashi, T. Kan, K. Matsumoto, I. Shimoyama, IEEE Inter. Conf. Micro Electro Mech. Sys. (MEMS) (in preparation)Google Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • G.J. Amador
    • 1
  • F. Durand
    • 1
  • W. Mao
    • 1
  • S. Pusulri
    • 2
  • H. Takahashi
    • 4
  • V.-T. Nguyen
    • 4
  • I. Shimoyama
    • 4
  • A. Alexeev
    • 1
  • D.L. Hu
    • 1
    • 3
    Email author
  1. 1.Schools of Mechanical Engineering, Georgia Institute of TechnologyAtlantaUSA
  2. 2.Biomedical Engineering, Georgia Institute of TechnologyAtlantaUSA
  3. 3.Biol. Georgia Institute of TechnologyAtlantaUSA
  4. 4.Department of Mechano-InformaticsThe University of TokyoTokyoJapan

Personalised recommendations