Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 17–18, pp 3393–3406 | Cite as

Dynamics of biosonar systems in Horseshoe bats

  • R. MüllerEmail author
Regular Article Applied Physics and Robotics
Part of the following topical collections:
  1. Dynamics of Animal Systems

Abstract

Horseshoe bats have an active ultrasonic sonar system that allows the animals to navigate and hunt prey in structure-rich natural environments. The physical components of this biosonar system contain an unusual dynamics that could play a key role in achieving the animals’ superior sensory performance. Horseshoe bat biosonar employs elaborate baffle shapes to diffract the outgoing and incoming ultrasonic wave packets; ultrasound is radiated from nostrils that are surrounded by noseleaves and received by large outer ears. Noseleaves and pinnae can be actuated while ultrasonic diffraction takes place. On the emission side, two noseleaf parts, the anterior leaf and the sella, have been shown to be in motion in synchrony with sound emission. On the reception side, the pinnae have been shown to change their shapes by up to 20% of their total length within ∼100 milliseconds. Due to these shape changes, diffraction of the incoming and outgoing waves is turned into a dynamic physical process. The dynamics of the diffraction process results in likewise dynamic device characteristics. If this additional dynamic dimension was found to enhance the encoding of sensory information substantially, horseshoe bat biosonar could be a model for the use of dynamic physical processes in sensing technology.

Keywords

Sonar European Physical Journal Special Topic Angular Resolution Sonar System Eptesicus Fuscus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.C. Allison, J. Mammal, 18, 80 (1937)CrossRefGoogle Scholar
  2. 2.
    R.A. Altes, Neural Networks 8, 1275 (1995)CrossRefGoogle Scholar
  3. 3.
    R.A. Altes, Application of eigenanalysis and tomography to time-frequency representations. In Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, IEEE (1992), p. 35Google Scholar
  4. 4.
    M. Aytekin, E. Grassi, M. Sahota, C.F. Moss, J. Acoust. Soc. Am. 116, 3594 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    R.M.R. Barclay, M.B. Fenton, M.D. Tuttle, M.J. Ryan, Can. J. Zool. 59, 750 (1981)CrossRefGoogle Scholar
  6. 6.
    B. Barshan, R. Kuc, IEEE Transactions on Syst. Man, and Cybernetics 22, 636 (1992)CrossRefGoogle Scholar
  7. 7.
    E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm intelligence: from natural to artificial systems, Number 1 (Oxford University Press, 1999)Google Scholar
  8. 8.
    V. Bruns, E. Schmieszek, Hear. Res. 3, 27 (1980)CrossRefGoogle Scholar
  9. 9.
    M. Buehler, Adv. Robotics 20, 15 (2002)MathSciNetGoogle Scholar
  10. 10.
    P. Caspers, Y. Fu, R. Müller, J. Acoust. Soc. Am. 137, 2334 (2015) Presented at: 169th Meeting of the Acoustical Society of America, Pittsburgh, PAADSCrossRefGoogle Scholar
  11. 11.
    P. Caspers, R. Müller, J. Acoust. Soc. Am. 137, 1081 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    J.A. Cheney, N. Konow, K.M. Middleton, K.S. Breuer, T.J. Roberts, E.L. Giblin, S.M. Swartz, Bioinsp. Biomim. 9, 025007 (2014)CrossRefGoogle Scholar
  13. 13.
    C. Csorba, P. Ujhelyi, N. Thomas, Horseshoe Bats of the World Alana Books (Bishop’s Castle, Shropshire, UK, 2003)Google Scholar
  14. 14.
    EdgeTech, 4200 series side scan sonar system (brochure, 2014)Google Scholar
  15. 15.
    L. Feng, L. Gao, H. Lu, R. Müller, PLOS ONE 7, e34685 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    U. Firzlaff, S. Schörnich, S. Hoffmann, G. Schuller, L. Wiegrebe, J. Neurosci. 26, 785 (2006)CrossRefGoogle Scholar
  17. 17.
    R.J. Full, T. Kubow, J. Schmitt, P. Holmes, D. Koditschek, Integr. Comp. Biol. 42, 149 (2002)CrossRefGoogle Scholar
  18. 18.
    L. Gao, S. Balakrishnan, W. He, Z. Yan, R. Müller, Phys. Rev. Lett. 107, 214301 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    L. Gao, R. Müller, Phys. Rev. Lett. 112, 109401 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    L. Göbbel, Cells Tissues Organs 170, 39 (2002)CrossRefGoogle Scholar
  21. 21.
    A.D. Grinnell, H.-U. Schnitzler, J. Comp. Physiol. A 116, 63 (1977)CrossRefGoogle Scholar
  22. 22.
    J.-E. Grunwald, S. Schörnich, L. Wiegrebe, Proc. Natl. Acad. Sci. USA 101, 5670 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    A.K. Gupta, D. Webster, R. Müller, J. Acoust. Soc. Am. (submitted)Google Scholar
  24. 24.
    D.J. Hartley, R.A. Suthers, J. Acoust. Soc. Am. 84, 1201 (1988)ADSCrossRefGoogle Scholar
  25. 25.
    W. He, A.K. Gupta, S. Pedersen, J.A. Simmons, R. Müller, PLOS ONE 10, e0121700 (2015), 13 pagesCrossRefGoogle Scholar
  26. 26.
    N.I. Hristov, M. Betke, D.E.H. Theriault, A. Bagchi, T.H. Kunz, J. Mammal. 91, 183 (2010)CrossRefGoogle Scholar
  27. 27.
    D.H. Johnson, D.E. Dugeon, Array Signal Processing: Concepts and Techniques, 1st edition (Prentice Hall PTR, New Jersey, 1993)Google Scholar
  28. 28.
    G. Jones, J.M.V. Rayner, Behav. Ecol. Sociobiol. 25, 183 (1989)CrossRefGoogle Scholar
  29. 29.
    R. Kober, H.U. Schnitzler, J. Acoust. Soc. Am. 87, 882 (1990)ADSCrossRefGoogle Scholar
  30. 30.
    M. Kössl, Hearing Res. 72, 73 (1994)CrossRefGoogle Scholar
  31. 31.
    R. Kuc, J. Acoust. Soc. Am. 100, 1849 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    R. Kuc, J. Acoust. Soc. Am. 102, 689 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    B. Kuhn, M. Vater, Hearing Res. 84, 139 (1995)CrossRefGoogle Scholar
  34. 34.
    D.A. Lauffenburger, A.F. Horwitz, Cell 84, 359 (1996)CrossRefGoogle Scholar
  35. 35.
    B.D. Lawrence, J.A. Simmons, Science 218, 481 (1982)ADSCrossRefGoogle Scholar
  36. 36.
    G.R. Long, H.-U. Schnitlzer, J. Comp. Physiol. 100, 211 (1975)CrossRefGoogle Scholar
  37. 37.
    N. Matsuta, S. Hiryu, E. Fujioka, Y. Yamada, H. Riquimaroux, Y. Watanabe, J. Exp. Biol. 216, 1210 (2013)CrossRefGoogle Scholar
  38. 38.
    W. Metzner, Nature 341, 529 (1989)ADSCrossRefGoogle Scholar
  39. 39.
    S.Z. Meymand, M. Pannala, R. Müller, J. Acoust. Soc. Am. 133, 1141 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    J. Mogdans, J. Ostwald, H.-U. Schnitzler, J. Acoust. Soc. Am. 84, 1676 (1988)ADSCrossRefGoogle Scholar
  41. 41.
    F.P. Möhres, J. Comp. Physiol. A 34, 547 (1953)Google Scholar
  42. 42.
    M. Motamedi, R. Müller, J. Acoust. Soc. Am. 135, 3613 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    R. Müller, Network: Comput. Neural Syst. 14, 595 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    R. Müller, J. Acoust. Soc. Am. 116, 3701 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    R. Müller, J. Acoust. Soc. Am. 128, 1414 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    R. Müller, R. Kuc, J. Acoust. Soc. Am. 108, 836 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    R. Müller, H. Lu, J.R. Buck, Phys. Rev. Lett. 100, 108701 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    R. Müller, S.Z. Meymand, M. Pannala, O.P.K. Reddy, L. Gao, In Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems (Scottsdale, Arizona, USA, 2011) ASME, p. SMASIS2011-5104Google Scholar
  49. 49.
    R. Müller, A.J. Mubeezi-Magoola, H. Peremans, J.C.T. Hallam, S. Jones, J. Flint, D. Reynaerts, H. Bruyninckx, R. Lerch, A. Streicher, J. Acoust. Soc. Am. 112, 2335 (2002)CrossRefGoogle Scholar
  50. 50.
    R. Müller, M. Pannala, O.P.K. Reddy, S.Z. Meymand, Smart Mater. Struct. 21, 094025 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    G. Neuweiler, Z. Vergl. Physiol. 67, 273 (1970)CrossRefGoogle Scholar
  52. 52.
    G. Neuweiler, E. Covey, Biology of Bats (Oxford University Press, 2000)Google Scholar
  53. 53.
    G. Neuweiler, W. Metzner, U. Heilmann, R. Rübsamen, M. Eckrich, H.H. Costa, Behav. Ecol. Sociobiol. 20, 53 (1987)CrossRefGoogle Scholar
  54. 54.
    M.A. Obrist, M.B. Fenton, J.L. Eger, P.A. Schlegel, J. Exp. Biol. 180, 119 (1993)Google Scholar
  55. 55.
    J. Ostwald, Animal Sonar Systems (Springer, 1980), p. 953Google Scholar
  56. 56.
    M. Pannala, S.Z. Meymand, R. Müller, Bioinsp. Biomim. 8, 026008 (2013)CrossRefGoogle Scholar
  57. 57.
    S.C. Pedersen, J . Mamm. 79, 91 (1998)CrossRefGoogle Scholar
  58. 58.
    S.C. Pedersen, Ontogeny, Functional Ecology and Evolution of bats (Cambridge University Press, 2000), p. 174Google Scholar
  59. 59.
    K.R. Rao, J. Ben-Arie, IEEE Trans. Biomed. Eng. 43, 1093 (1996)CrossRefGoogle Scholar
  60. 60.
    Teledyne Reson, Seabat 7125 – ultra high resolution multibeam echosounder (2014)Google Scholar
  61. 61.
    M.J. Ryan, M.D. Tuttle, R.M.R. Barclay, J. Comp. Physiol. A. 150, 413 (1983)CrossRefGoogle Scholar
  62. 62.
    H. Schneider, F.P.Möhres, Z. Vergl. Physiol. 44, 1 (1960)CrossRefGoogle Scholar
  63. 63.
    H.-U. Schnitzler, J. Comp. Physiol. 82, 79 (1973)CrossRefGoogle Scholar
  64. 64.
    H.-U. Schnitzler, A. Denzinger, J. Comp. Physiol. A 197, 541 (2011)CrossRefGoogle Scholar
  65. 65.
    H.-U. Schnitzler, A.D. Grinnell, J. Comp. Physiol A 116, 51 (1977)CrossRefGoogle Scholar
  66. 66.
    G. Schuller, G. Pollak, J. Comp. Physiol. A 132, 47 (1979)CrossRefGoogle Scholar
  67. 67.
    J.A. Simmons, S.A. Kick, B.D. Lawrence, C. Hale, C. Bard, B. Escudie, J. Comp. Physiol. A 153, 321 (1983)CrossRefGoogle Scholar
  68. 68.
    N.B. Simmons, Mammal species of the World: a taxonomic and geographic reference, 3rd edition, 1 (Johns Hopkins University Press, 2005), p. 312Google Scholar
  69. 69.
    N.B. Simmons, K.L. Seymour, J. Habersetzer, G.F. Gunnell, Nature 451, 818 (2008)ADSCrossRefGoogle Scholar
  70. 70.
    D.P. Skinner, R.A. Altes, J.D. Jones, J. Acoust. Soc. Am. 62, 1239 (1977)ADSCrossRefGoogle Scholar
  71. 71.
    M.I. Skolnik, Introduction to Radar Systems, 3rd edition (McGraw-Hill, New York, 2002)Google Scholar
  72. 72.
    M. Trappe, H.-U. Schnitzler, Naturwissenschaften. 69, 193 (1982)ADSCrossRefGoogle Scholar
  73. 73.
    D. Vanderelst, J. Reijniers, H. Peremans, J. R. Soc. Interface 9, 1100 (2012)CrossRefGoogle Scholar
  74. 74.
    V.A. Walker, H. Peremans, J.C.T. Hallam, J. Acoust. Soc. Am. 104, 569 (1998)ADSCrossRefGoogle Scholar
  75. 75.
    Y. Winter, O. Von Helversen, J. Comp. Physiol. B 168, 105 (1998)CrossRefGoogle Scholar
  76. 76.
    J.M. Wotton, T. Haresign, M.J. Ferragamo, J.A. Simmons, J. Acoust. Soc. Am. 100, 1764 (1996)ADSCrossRefGoogle Scholar
  77. 77.
    J.M. Wotton, T. Haresign, J.A. Simmons, J. Acoust. Soc. Am. 98, 1423 (1995)ADSCrossRefGoogle Scholar
  78. 78.
    Z. Zhang, S.T. Nguyen, R. Müller, Phys. Rev. Lett. 103, 038701 (2009)ADSCrossRefGoogle Scholar
  79. 79.
    H. Zhao, S. Zhang, M. Zuo, J. Zhou, J. Zool. Lond. 259, 189 (2003)CrossRefGoogle Scholar
  80. 80.
    Q. Zhuang, R. Müller, Phys. Rev. Lett. 97, 218701 (2006)ADSCrossRefGoogle Scholar
  81. 81.
    Q. Zhuang, R. Müller, Phys. Rev. E 76, 051902 (2007)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringVirginia TechBlacksburgUSA
  2. 2.Shandong University – Virginia Tech International Laboratory, Shandong UniversityJinanChina

Personalised recommendations