The European Physical Journal Special Topics

, Volume 224, Issue 17–18, pp 3325–3342 | Cite as

On the control of the Heider balance model

Regular Article Physics of Social Interactions
Part of the following topical collections:
  1. Dynamics of Animal Systems

Abstract

The Heider social balance model describes the evolution of the relationships in a social network of humans or animals. This model is built upon the concept of balance of triads consisting of friendly or hostile edges representing the state of the network. In this differential model, a leader is introduced in order to control the system and to drive the social network to a desired relationship state. Further, the stability, the local controllability, and the optimal control through leadership of the Heider model are investigated. Results of numerical experiments demonstrate the ability of the proposed control strategy to drive the Heider balance model to friendship.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Altafini, In Decision and Control (CDC), 2012 IEEE 51st Annual Conference on, IEEE (2012), p. 5876Google Scholar
  2. 2.
    T. Antal, P.L. Krapivsky, S. Redner, Phys. Rev. E 72, 036121 (2005)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    T. Antal, P.L Krapivsky, S. Redner, Physica D: Nonlinear Phenomena 224, 130 (2006)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Borzì, V. Schulz, Computational optimization of systems governed by partial differential equations, SIAM 8 (2011)Google Scholar
  5. 5.
    A. Borzì, S. Wongkaew, Math. Models Methods Appl. Sci. 25, 255 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    F. Cucker, E. Mordecki, J. de mathématiques pures et appliquées 89, 278 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    L. Donetti, M.A. Munoz, J. Stat. Mech. Theo. Exper. 2004, P10012 (2004)CrossRefGoogle Scholar
  8. 8.
    P. Gawronski, M.J. Krawczyk, K. Kulakowski, Acta Phys. Polonica A 46, 911 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    L. Grüne, J. Pannek, Nonlinear model predictive control (Springer, 2011)Google Scholar
  10. 10.
    S.-Y. Ha, K. Lee, D. Levy, et al., Commu. Math. Sci. 7, 453 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    W.W. Hager, Numerische Mathematik 87, 247 (2000)MathSciNetCrossRefGoogle Scholar
  12. 12.
    W.W. Hager, H. Zhang, SIAM J. Optimization. 16, 170 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    F. Heider, Psychological Rev. 51, 358 (1944)CrossRefGoogle Scholar
  14. 14.
    F. Heider, The psychology of interpersonal relations (Lawrence Erlbaum Assoc. Inc., 1958)Google Scholar
  15. 15.
    A. Ilany, A. Barocas, L. Koren, M. Kam, E. Geffen, Animal Behav. 85, 1397 (2013)CrossRefGoogle Scholar
  16. 16.
    K. Kulakowski, P. Gawronski, P. Gronek, Int. J. Modern Phys. C 16, 707 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    S.A. Marvel, J. Kleinberg, R.D. Kleinberg, S.H. Strogatz, Proc. Natl. Acad. Sci. 108, 1771 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    S. Nakajima, Psychological Rep. 96, 1011 (2005)Google Scholar
  19. 19.
    M.E.J. Newman, Phys. Rev. E 70, 056131 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    R. Nishi, N. Masuda, Europhys. Lett. 107, 48003 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    J.A. Pimentel, M. Aldana, C. Huepe, H. Larralde, Phys. Rev. E 77, 061138 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    T.H. Summers, I. Shames, Europhys. Lett. 103, 18001 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    V.A. Traag, P. Van Dooren, P. De Leenheer, PLOS ONE 8, e60063 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    S. Wongkaew, M. Caponigro, A. Borzì, Math. Models Meth. Appl. Sci. 25, 565 (2015)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Institut für Mathematik, Universität Würzburg, Emil-Fischer-Strasse 31WürzburgGermany
  2. 2.Conservatoire National des Arts et Métiers, Équipe M2NParisFrance
  3. 3.Faculty of Physics and Applied Computer Science, AGH University of Science and Technology al. Mickiewicza 30KrakòwPoland
  4. 4.Institut für Mathematik, Universität Würzburg, Emil-Fischer-Strasse 30WürzburgGermany

Personalised recommendations