Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 17–18, pp 3199–3210 | Cite as

Paramecia swimming in viscous flow

  • P. Zhang
  • S. Jana
  • M. Giarra
  • P.P. Vlachos
  • S. JungEmail author
Regular Article Physics of Locomotion
Part of the following topical collections:
  1. Dynamics of Animal Systems

Abstract

Ciliates like Paramecia exhibit fore-aft asymmetry in their body shapes, and preferentially swim in the direction of the slender anterior rather than the wider posterior. However, the physical reasons for this preference are not well understood. In this work, we propose that specific features of the fluid flow around swimming Paramecia confer some energetic advantage to the preferred swimming direction. Therefore, we seek to understand the effects of body asymmetry and swimming direction on the efficiency of swimming and the flux of fluid into the cilia layer (and thus of food into the oral groove), which we assumed to be primary factors in the energy budgets of these organisms. To this end, we combined numerical techniques (the boundary element method) and laboratory experiments (micro particle image velocimetry) to develop a quantitative model of the flow around a Paramecium and investigate the effect of the body shape on the velocity fields, as well as on the swimming and feeding behaviors. Both simulation and experimental results show that velocity fields exhibit fore-aft asymmetry. Moreover, the shape asymmetry revealed an increase of the fluid flux into the cilia layer compared to symmetric body shapes. Under the assumption that cilia fluid intake and feeding efficiency are primary factors in the energy budgets of Paramecia, our model predicts that the anterior swimming direction is energetically favorable to the posterior swimming direction.

Keywords

Particle Image Velocimetry Boundary Element Method European Physical Journal Special Topic Body Shape Surface Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Fenchel, Sci. 296, 1068 (2002)CrossRefADSGoogle Scholar
  2. 2.
    J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, A.R. Place, Proc. Natl. Acad. Sci. USA 104, 17512 (2007)CrossRefADSGoogle Scholar
  3. 3.
    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    S. Michelin, E. Lauga, Phys. Fluids 23, 101901 (2011)CrossRefADSGoogle Scholar
  5. 5.
    D. Tam, A.E. Hosoi, Proc. Natl. Acad. Sci. USA 108, 1001 (2011)CrossRefADSGoogle Scholar
  6. 6.
    J.O. Kessler, Nature 313, 218 (1985)CrossRefADSGoogle Scholar
  7. 7.
    J.S. Guasto, K.A. Johnson, J.P. Gollub, Phys. Rev. Lett. 105, 168102 (2010)CrossRefADSGoogle Scholar
  8. 8.
    V. Magar, T.J. Pedley, J. Fluid Mech. 539, 93 (2005)MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    J.S. Guasto, R. Rusconi, R. Stocker, Ann. Rev. Fluid Mech. 44, 373 (2012)MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    C. Brennen, H. Winet, Ann. Rev. Fluid Mech. 9, 339 (1977)CrossRefADSGoogle Scholar
  11. 11.
    R. Wichterman, The biology of Paramecium (Plenum Press, New York/London, 1986)Google Scholar
  12. 12.
    H. Machemer, J. Exp. Biol. 57, 239 (1972)Google Scholar
  13. 13.
    K. Drescher, R.E. Goldstein, N. Michel, M. Polin, I. Tuval, Phys. Rev. Lett. 105, 168101 (2010)CrossRefADSGoogle Scholar
  14. 14.
    K. Drescher, J. Dunkel, L.H. Cisneros, S. Ganguly, R.E. Goldstein, Proc. Natl. Acad. Sci. USA 108, 10940 (2011)CrossRefGoogle Scholar
  15. 15.
    S.R. Keller, T.Y. Wu, J. Fluid Mech. 80, 259 (1977)CrossRefADSGoogle Scholar
  16. 16.
    J. Kim, Y. Jang, D. Byun, M. Kim, S.W. Nam, S. Park, J. Vis. 14(4), 361 (2011)CrossRefGoogle Scholar
  17. 17.
    S. Jana, S.H. Um, S. Jung, Phys. Fluids 24, 041901 (2012)CrossRefADSGoogle Scholar
  18. 18.
    J.R. Blake, J. Fluid Mech. 46, 199 (1971)CrossRefADSGoogle Scholar
  19. 19.
    S. Spagnolie, E. Lauga, J. Fluid Mech. 700, 105 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    H. Masoud, H.A. Stone, M.J. Shelley, J. Fluid Mech. 733, (2013)Google Scholar
  21. 21.
    S. Palagi, E.W.H. Jager, B. Mazzolai, L. Beccai, Bioinspir. Biomim. 8, 046004 (2013)CrossRefADSGoogle Scholar
  22. 22.
    A. Vilfan, Phys. Rev. Lett. 109, 128105 (2012)CrossRefADSGoogle Scholar
  23. 23.
    L. Zhu, E. Lauga, L. Brandt, J. Fluid Mech. 726, 285 (2013)MathSciNetCrossRefADSGoogle Scholar
  24. 24.
    P. Underhill, M.D. Graham, Phys. Fluids 23, 121902 (2011)CrossRefADSGoogle Scholar
  25. 25.
    Carolina Protozoa, and Invertebrates Manual. Burlington, North Carolina: Carolina Biological Supply Company (2010)Google Scholar
  26. 26.
    A. Eckstein, J. Charonko, P. Vlachos, Exp. Fluids 45, 485 (2008)CrossRefGoogle Scholar
  27. 27.
    A. Eckstein, P.P. Vlachos, Meas. Sci. Technol. 20, 055401 (2009)CrossRefADSGoogle Scholar
  28. 28.
    A. Eckstein, P.P Vlachos, Meas. Sci. Technol. 20, 075402 (2009)CrossRefADSGoogle Scholar
  29. 29.
    F. Scarano, M. L. Riethmuller, Exper. Fluids 26, 513 (1999)CrossRefADSGoogle Scholar
  30. 30.
    R. Hain, C.J. Kähler, Exper. Fluids 42, 575 (2007)CrossRefADSGoogle Scholar
  31. 31.
    C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University Press, 1992)Google Scholar
  32. 32.
    C. Pozrikidis, A Practical Guide to Boundary Element Methods with the Software Library BEMLIB (CRC Press, 2002)Google Scholar
  33. 33.
    L. Zhu, E. Lauga, L. Brandt, Phys. Fluids 24, 051902 (2012)CrossRefADSGoogle Scholar
  34. 34.
    I. Jung, T.R. Powers, J.M. Valles Jr., Biophys. J. 106, 106 (2014)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • P. Zhang
    • 1
  • S. Jana
    • 1
  • M. Giarra
    • 2
  • P.P. Vlachos
    • 2
    • 3
  • S. Jung
    • 1
    Email author
  1. 1.Department of Engineering Science and MechanicsVirginia TechBlacksburgUSA
  2. 2.Department of Mechanical EngineeringVirginia TechBlacksburgUSA
  3. 3.School of Mechanical Engineering, Purdue UniversityWest LafayetteUSA

Personalised recommendations