The European Physical Journal Special Topics

, Volume 224, Issue 14–15, pp 3023–3040 | Cite as

Chaos control and impact suppression in rotor-bearing system using magnetorheological fluid

  • V. PiccirilloEmail author
  • J.M. BalthazarEmail author
  • A.M. TussetEmail author
Regular Article Nonlinear System Identification, Dynamics, and Control with Smart Materials
Part of the following topical collections:
  1. Nonlinear and Multiscale Dynamics of Smart Materials in Energy Harvesting


In this paper a general dynamic model of a rotor-bearing system using magnetorheological fluid (MR) is presented. The mathematical model of the rotor-bearing system results from a Jeffcott rotor with two-degrees of freedom and discontinuous supports. The effect of magnetorheological fluid on vibration is investigated based on a model of a modified LuGre dynamical friction model. A comparison with equivalent rotor-bearing system is made to verify the contribution of MR in this system. In this study two different implementations of the control procedure are presented, one eliminating the chaotic behavior and the second suppressing the unbalancing vibration so as to avoid impact in rotor-bearing system. First, to control the undesirable chaos in rotor-bearing system a damped passive control methodology is used. On the other hand, to suppressing the impact vibration, the Fuzzy Logic Control is considered. Results demonstrate that undesirable behaviors of rotor can be avoided by varying the damping force.


Root Mean Square European Physical Journal Special Topic Bifurcation Diagram Rotor System Energy Harvest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bernardini, G. Rega, G. Litak, A. Syta, Proc. Inst. Mech. Eng. K J Multi-body Dyn. 227 (2013)Google Scholar
  2. 2.
    C. Canudas, H. Olsson, K.J. Aström, P. Lischinsky, IEEE Trans. Automatic Control 40 (1995)Google Scholar
  3. 3.
    S. Cetin, E. Zergeroglu, S. Sivrioglu, I. Yuksek, Nonlinear Dyn. 66, 4 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    C. Chang-Jian, C. Kuang-Chen, Int. J. Mech. Sci. 50 (2008)Google Scholar
  5. 5.
    J.P. Chávez, M. Wiercigroch, Commun. Nonlinear Sci. Numer. Simulat. 18 (2013)Google Scholar
  6. 6.
    I. Chopra, J. Sirohi, Smart Structures Theory (Cambridge University Press, New York, 2013)Google Scholar
  7. 7.
    F. Chu, Z. Zhang, J. Sound Vibr. 210 (1998)Google Scholar
  8. 8.
    F.F. Ehrich, Handbook of rotordynamics (New York: McGraw-Hill, 1992)Google Scholar
  9. 9.
    J.L.P. Felix, J.M.B, R.M.L.R.F. Brasil, B.R. Pontes, J. Comput. Nonlinear Dynam. 4, (2009)Google Scholar
  10. 10.
    A.M. Fraser, H.L. Swinney, Phys. Rev. A 33 (1986)Google Scholar
  11. 11.
    C. Gan, Y. Wang, S. Xang, Y. Cao, Int. J. Mech. Sci. 78 (2014)Google Scholar
  12. 12.
    G. Genta, Dynamics of rotating systems (New York: Springer-Verlag, 2005)Google Scholar
  13. 13.
    D.H. Gonsalves, R.D. Neilson, A.D.S. Barr, Nonlinear Dyn. 7 (1995)Google Scholar
  14. 14.
    G.A. Gottwald, I. Melbourne, Proc. R. Soc. Lond. A 460 (2004)Google Scholar
  15. 15.
    R.H. Hensen, M.J.G. Van de Molengraft, M. Steinbuch. Automatica. 39, 12 (2003)Google Scholar
  16. 16.
    H.H. Jeffcott, Philos. Mag. 6 (1919)Google Scholar
  17. 17.
    R. Jimenez, L. Alvarez, Struct. Control Health Monitor 12 (2005)Google Scholar
  18. 18.
    E.V. Karpenko, M. Wiercigroch, M.P. Cartmell, Chaos. Solitons. Fract. 13 (2002)Google Scholar
  19. 19.
    E.V. Karpenko, M. Wiercigroch, E.E. Pavlovskaia, M.P. Cartmell, Int. J. Mech. Sci. 44 (2002)Google Scholar
  20. 20.
    Y.B. Kim, S.T. Noah, Nonlinear Dyn. 1 (1990)Google Scholar
  21. 21.
    Y.B. Kim, S.T. Noah, J. Sound. Vib. 190 (1996)Google Scholar
  22. 22.
    G. Litak, A. Syta, M. Wiercigroch, Chaos. Solitons. Fract. 40 (2009)Google Scholar
  23. 23.
    G. Litak, D. Bernardini, A. Syta, G. Rega, A. Rysak, Eur. Phys. J. Special Topics 222 (2013)Google Scholar
  24. 24.
    G. Litak, J.T. Sawicki, Eur. Phys. J. Appl. Phys. 64, 31033 (2013)CrossRefGoogle Scholar
  25. 25.
    E.E. Pavlovskaia, E.V. Karpenko, M. Wiercigroch, J. Sound Vibr, 1–2 (2004)Google Scholar
  26. 26.
    V. Piccirillo, A.M. Tusset, J.M. Balthazar, J. Theor. Appl. Mech. 52 (2014)Google Scholar
  27. 27.
    C. Sakai., H. Ohmori, A. Sano, Proceedings of the 42nd IEEE Conference on Decision and Control (Maui, Hawaii USA, December, 2003)Google Scholar
  28. 28.
    A.M. Tusset, J.M. Balthazar, Differ. Equ. Dyn. Syst. 21 (2013)Google Scholar
  29. 29.
    A.M. Tusset, J.M. Balthazar, J.L.P. Felix, J. Vib. Control 19 (2013)Google Scholar
  30. 30.
    A.M. Tusset, J.M. Balthazar;, F.R. Chavarette, J.L.P. Felix, Nonlinear Dyn. 69 (2012)Google Scholar
  31. 31.
    A.M. Tusset, M. Rafikov, J.M. Balthazar, J. Vib. Control 15 (2009)Google Scholar
  32. 32.
    N. Vlajic, X. Liu, H. Karki, B. Balachandran, Int. J. Mech. Sci. 83 (2014)Google Scholar
  33. 33.
    Y.F. Wang., D.H. Wang, T.Y. Chai, J. Sound Vibr. 330 (2011)Google Scholar
  34. 34.
    Z. Yao, D. Mei, Z. Chen, J. Sound Vibr. 330 (2011)Google Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Federal Technological University of Paraná, UTFPR — Department of MathematicsPonta GrossaBrazil
  2. 2.Technological Institute of Aeronautics, ITA — Department of Mechanical EngineeringSão Jose dos CamposBrazil

Personalised recommendations