Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 14–15, pp 2993–3004 | Cite as

A ferrofluid-based energy harvester: An experimental investigation involving internally-resonant sloshing modes

  • S.F. Alazemi
  • A. Bibo
  • M.F. Daqaq
Regular Article Prospective Materials and Structures for Energy Harvesting
Part of the following topical collections:
  1. Nonlinear and Multiscale Dynamics of Smart Materials in Energy Harvesting

Abstract

The conformable nature of liquid-state transduction materials offers unprecedented opportunities for designing complex-shaped vibratory energy harvesters that are, otherwise, hard to realize using solid-state transduction elements. To achieve this goal, we propose an electromagnetic energy harvester which exploits the sloshing of a magnetized ferrofluid column in a base-excited container to transform vibratory energy into electricity. The sloshing of the magnetized ferrofluid column generates a change in magnetic flux which, in turn, induces a current in an adjacent closed-loop conductor. In this study, we specifically choose the dimensions of the container and the height of the fluid column such that the modal frequencies of the sloshing ferrofluid are nearly commensurate. It is shown that this choice of parameters activates a two-to-one internal energy pump between the commensurate modes resulting in two response peaks and large-amplitude voltages over a wide range of frequencies, thereby improving the steady-state bandwidth of the harvester. Influence of several of the key design parameters on the harvester’s performance is also discussed.

Keywords

Modal Frequency Output Voltage European Physical Journal Special Topic Excitation Frequency Energy Harvester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Shearwood, R.B. Yates, Electron. Lett. 33, 1883 (1997)CrossRefGoogle Scholar
  2. 2.
    R. Amirtharajah, A.P. Chandrakasan, IEEE J. Solid-State Circuits 33, 687 (1998)CrossRefGoogle Scholar
  3. 3.
    H. Sodano, D.J. Inman, G. Park, Shock Vib. Dig. 36, 197 (2004)CrossRefGoogle Scholar
  4. 4.
    H. Sodano, D.J. Inman, G. Park, J. Intel. Mater. Syst. Struct. 16, 67 (2005)CrossRefGoogle Scholar
  5. 5.
    S. Roundy, J. Intel. Mater. Struct. 16, 809 (2005)CrossRefGoogle Scholar
  6. 6.
    V. Challa, M. Prasad, Y. Shi, F. Fisher, Smart Mater. Struct. 17, 015035 (2008)CrossRefADSGoogle Scholar
  7. 7.
    F. Cottone, H. Vocca, L. Gammaitoni, Phys. Rev. Lett. 102, 080601–1–080601–4 (2009)CrossRefADSGoogle Scholar
  8. 8.
    A. Erturk, J. Hoffman, D.J. Inman, Appl. Phys. Lett. 94, 254102 (2009)CrossRefADSGoogle Scholar
  9. 9.
    E. Halvorsen, J. Microelectromech. Syst. 17, 1061 (2008)CrossRefGoogle Scholar
  10. 10.
    G. Litak, M. Borowiec, M.I. Friswell, S. Adhikari, J. Theor. Appl. Mech. (2011)Google Scholar
  11. 11.
    N. Elvin, N. Lajnef, A. Elvin, Smart Mater. Struct. 15, 977 (2006)CrossRefADSGoogle Scholar
  12. 12.
    B.P. Mann, E.H. Dowell, S.C. Stanton, A. Erturk, D.J. Inman, J. Intel. Mater. Syst. Struct. 23, 183 (2012)CrossRefGoogle Scholar
  13. 13.
    A. Triplett, D. Quinn, J. Intel. Mater. Syst. Struct. 20, 1959 (2009)CrossRefGoogle Scholar
  14. 14.
    C.B. Williams, C. Shearwood, M.A. Harradine, P.H. Mellor, T.S. Birch, R.B. Yates. IEE Proceedings: Circuits, Devices and Syst. 148, 337 (1998)CrossRefGoogle Scholar
  15. 15.
    C. Serre, A. Perez-Rodriguez, N. Fondevilla, E. Martincic, S. Martinez, J.R. Morante, J. Montserrat, J. Esteve, Microsyst. Techno. 14, 653 (2008)CrossRefGoogle Scholar
  16. 16.
    B. Mann, N. Sims, J. Soun. Vib. 319, 515 (2008)CrossRefADSGoogle Scholar
  17. 17.
    D. Jia, J. Liu, Y. Zhou, Phys. Lett. A 373, 1305 (2009)CrossRefADSGoogle Scholar
  18. 18.
    A. King, G. Li, A Bibo, R. Masana, M.F. Daqaq, Phys. Lett. A 376, 2163 (2012)CrossRefADSGoogle Scholar
  19. 19.
    R.E. Rosensweig, Ferrohydrodynamics (Dover Publications, 1997)Google Scholar
  20. 20.
    A.H. Nayfeh, Nonlinear Interactions Wiley-Interscience (New York, 2000)Google Scholar
  21. 21.
    Raouf A. Ibrahim, Liquid Sloshing Dynamics: Theory and Applications (Cambridge University Press, 2005)Google Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • S.F. Alazemi
    • 1
  • A. Bibo
    • 2
  • M.F. Daqaq
    • 1
    • 3
  1. 1.Department of Mechanical EngineeringClemson UniversityClemsonUSA
  2. 2.Research Associate, Clemson University Restoration InstituteCharlestonUSA
  3. 3.Currently Associate Professor at Masdar Institute of Science and TechnologyAbu DhabiUnited Arab Emirates

Personalised recommendations