The European Physical Journal Special Topics

, Volume 224, Issue 14–15, pp 2967–2992 | Cite as

Principles of thermoacoustic energy harvesting

  • A.W. Avent
  • C.R. Bowen
Review Prospective Materials and Structures for Energy Harvesting
Part of the following topical collections:
  1. Nonlinear and Multiscale Dynamics of Smart Materials in Energy Harvesting


Thermoacoustics exploit a temperature gradient to produce powerful acoustic pressure waves. The technology has a key role to play in energy harvesting systems. A time-line in the development of thermoacoustics is presented from its earliest recorded example in glass blowing through to the development of the Sondhauss and Rijke tubes to Stirling engines and pulse-tube cryo-cooling. The review sets the current literature in context, identifies key publications and promising areas of research. The fundamental principles of thermoacoustic phenomena are explained; design challenges and factors influencing efficiency are explored. Thermoacoustic processes involve complex multi-physical coupling and transient, highly non-linear relationships which are computationally expensive to model; appropriate numerical modelling techniques and options for analyses are presented. Potential methods of harvesting the energy in the acoustic waves are also examined.


European Physical Journal Special Topic Energy Harvest Pressure Amplitude Blockage Ratio Plate Spacing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.M. Stern, B. Schlick-Nolte, Early glass of the ancient world: 1600 BC–AD 50: Ernesto Wolf collection (Verlag Gerd Hatje, Stockholm, 1994)Google Scholar
  2. 2.
    K.T. Feldman, H. Hirsch, R.L. Carier, J. Acou. Soc. Am. 39, 1236 (1966)CrossRefADSGoogle Scholar
  3. 3.
    P.L. Rijke, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science LXXI 17, 419 (1859)Google Scholar
  4. 4.
    B. Rayleigh, The Theory of Sound, Vol. 2 (Macmillan, 1896)Google Scholar
  5. 5.
    G. Bisio, G. Rubatto, Energy 24, 117 (1999)CrossRefGoogle Scholar
  6. 6.
    M.P. Mortell, Int. J. Eng. Sci. 9, 175 (1971)CrossRefGoogle Scholar
  7. 7.
    N. Rott, Angew, Math, Phys. 1, 43 (1969)MathSciNetGoogle Scholar
  8. 8.
    J. Wheatley, T. Hofler, G.W. Swift, A. Migliori 74, 153 (2015)Google Scholar
  9. 9.
    G.W. Swift, J. Acou. Soc. Am. (2003)Google Scholar
  10. 10.
    R. Sier, Rev. Robert Stirling, DD: A Biography of the Inventor of the Heat Economiser & Stirling Cycle Engine (LA Mair, 1995)Google Scholar
  11. 11.
    M. Pierens, P. Duthil, 5, 532 (2011), ISSN 2010376XGoogle Scholar
  12. 12.
    M.E. Poese, Penn State University – Thermoacoustic refrigeration,
  13. 13.
    IBM, Implementing Microscale Thermoacoustic Heat and Power Control for Processors and 3D Chipstacks, Patent No. US20140083094 (2012)Google Scholar
  14. 14.
    Manufacturing Modine Ltd., Thermo-acoustic system, Patent No. WO1999020957 A1, (1998)Google Scholar
  15. 15.
    Praxair, Thermoacoustic cogeneration system, United States Patent 6604364 (2002)Google Scholar
  16. 16.
    G. Mozurkewich, A model for transverse heat transfer in thermoacoustic devices, in December conference 1996 (The Acoustical Society of America)Google Scholar
  17. 17.
    Sounds-Cool, The Ben & Jerry’ s Project (2005),
  18. 18.
  19. 19.
    Honda Motor Co Ltd, Thermoacoustic Engine, Patent No. JP2011231941 (2011)Google Scholar
  20. 20.
    King Abdul Aziz City for Science and Technology, Standing Wave thermoacoustic/piezoelectric refrigerator, Patent No. US2011252812 (2010)Google Scholar
  21. 21.
    Toyota Motor Co, Thermoacoustic cooling device, Patent No. JP2007315680 (2005)Google Scholar
  22. 22.
    Hitachi Ltd., Thermoacoustic heat pump/water heater, Patent No. JP2005188846 (2003)Google Scholar
  23. 23.
    ASTER, ASTER – Thermoacoustics (2015),
  24. 24.
    J.-P. Thermeau, Thermoacoustics is going to make a lot of Nnnnnnnois. Tech. rep., Institut de Physique Nucléaire d’Orsay (2009)Google Scholar
  25. 25.
  26. 26.
    M. Nouh, O. Aldraihem, A. Baz, Eng. Optimiz. 46, 543 (2013)CrossRefGoogle Scholar
  27. 27.
    M.E.H. Tijani, J.C.H. Zeegers, a.T.a.M. de Waele, J. Acou. Soc. Am. 112, 128 (2002)CrossRefADSGoogle Scholar
  28. 28.
    N.M. Hariharan, P. Sivashanmugam, S. Kasthurirengan, Exper. Heat Transfer 28, 267 (2014)CrossRefADSGoogle Scholar
  29. 29.
    N.M. Hariharan, P. Sivashanmugam, S. Kasthurirengan, Appl. Acoustics 73, 1052 (2012)CrossRefGoogle Scholar
  30. 30.
    G. Petculescu, L.A. Wilen, J. Acou. Soc. Am. 106, 688 (2014)CrossRefADSGoogle Scholar
  31. 31.
    F.S. Nessler, R.M. Keolian, Comparison of a pin stack to a conventional stack in a thermoacoustic prime mover, Ph.D. thesis, 1995Google Scholar
  32. 32.
    M.E. Hayden, G.W. Swift, J. Acou. Soc. Am. 102, 2714 (1997)CrossRefADSGoogle Scholar
  33. 33.
    B.N. Rott, G. Zouzoulas, S. Federal, J. Appl. Math. Phys. 27, 197 (1976)CrossRefGoogle Scholar
  34. 34.
    J.A. Lightfoot, National Center for Physical Acoustics, Ph.D. thesis, University of Mississippi, 1997Google Scholar
  35. 35.
    F. Zink, H. Waterer, R. Archer, L. Schaefer, Int. J. Therm. Sci. 48, 2309 (2009)CrossRefGoogle Scholar
  36. 36.
    H. Babaei, K. Siddiqui, Energy Conversion Management 49, 3585 (2008)CrossRefGoogle Scholar
  37. 37.
    Q. Tu, C. Wu, Q. Li, F. Wu, F. Guo, Int. J. Eng. Sci. 41, 1337 (2003)CrossRefGoogle Scholar
  38. 38.
    F. Wu, L. Chen, A. Shu, X. Kan, K. Wu, Z. Yang, Cryogenics 49, 107 (2009)CrossRefADSGoogle Scholar
  39. 39.
    Z. Yu, a.J. Jaworski, Optimization of thermoacoustic stacks for low onset temperature engines, in Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 224 (2010), p. 329Google Scholar
  40. 40.
    A. Migliori, G.W. Swift, Appl. Phys. Lett. 53, 355 (1988)CrossRefADSGoogle Scholar
  41. 41.
    K.K. Ho, E. Gans, D.D. Shin, G.P. Carman, Integrated Ferroelectrics 101, 89 (2008)CrossRefGoogle Scholar
  42. 42.
    P. Spoor, G. Swift, Phys. Rev. Lett. 85, 1646 (2000)CrossRefADSGoogle Scholar
  43. 43.
    A. Campo, M.M. Papari, E. Abu-Nada, Appl. Thermal Eng. 31, 3142 (2011)CrossRefGoogle Scholar
  44. 44.
    N.M. Hariharan, P. Sivashanmugam, S. Kasthurirengan, Int. J. Heat Mass Transfer 64, 1183 (2013)CrossRefGoogle Scholar
  45. 45.
    G.W. Swift, J. Appl. Math. Phys. 84, 1145 (1988)Google Scholar
  46. 46.
    M.E.H. Tijani, J.C.H. Zeegers, A. De Waele, Cryogenics 42, 49 (2002)CrossRefADSGoogle Scholar
  47. 47.
    Y. Liu, T. Xin, Q. Huang, X. Shi, S. Chen, L. Chen, Energy Conversion Management 52, 664 (2011)CrossRefGoogle Scholar
  48. 48.
    B. Ward, G.W. Swift, Design Environment for Low-Amplitude ThermoAcoustic Engines (DeltaE) Tutorial and Users Guide (Version 5.1), Los Alamos National Laboratory (June 2001) (2001)Google Scholar
  49. 49.
    M. Nouh, O. Aldraihem, A. Baz, J. Dyn. Syst. Meas. Control 136, 061005 (2014)CrossRefGoogle Scholar
  50. 50.
    M.E. Poese, An Evolution of Compact Thermoacoustic Refrigerator Design, Ph.D. thesis, Pennsylvania State University, 2004Google Scholar
  51. 51.
    D. Sun, K. Wang, X. Zhang, Y. Guo, Y. Xu, L. Qiu, Appl. Energy 106, 377 (2013)CrossRefGoogle Scholar
  52. 52.
    T. Jin, B.S. Zhang, X.M. Zhong, G.B. Chen, Preliminary Study on Circuit Simulation of Thermo Acoustic Engines, in AIP, Vol. 1103 (2014), p. 1Google Scholar
  53. 53.
    M. Nouh, O. Aldraihem, A. Baz, J. Acou. Soc. Am. 135, 669 (2014)CrossRefADSGoogle Scholar
  54. 54.
    P.H. Riley, Procedia Eng. 56, 821 (2013)CrossRefGoogle Scholar
  55. 55.
    D. Marx, P. Blanc-Benon, Comptes Rendus – Mecanique 332, 867 (2004)CrossRefADSGoogle Scholar
  56. 56.
    G. Yu, W. Dai, E. Luo, Cryogenics 50, 615 (2010)CrossRefADSGoogle Scholar
  57. 57.
    G.Y. Yu, E.C. Luo, W. Dai, J.Y. Hu, J. Appl. Phys. 102, 74901 (2007)CrossRefGoogle Scholar
  58. 58.
    J.H. So, G.W. Swift, S. Backhaus, J. Acou. Soc. Am. 120, 1898 (2006)CrossRefADSGoogle Scholar
  59. 59.
    X. Kan, F. Wu, L. Chen, F. Sun, F. Guo, Int. J. Sustainable Energy 29, 220 (2010)CrossRefGoogle Scholar
  60. 60.
    A.J. Organ, The regenerator and the Stirling engine (Mechanical Engineering Publications, London, 1997)Google Scholar
  61. 61.
    J.R. Olson, G.W. Swift, J. Acou. Soc. Am. 95, 1405 (1994)CrossRefADSGoogle Scholar
  62. 62.
    E. Gonen, G. Grossman, Energy Conversion Management 88, 894 (2014)CrossRefGoogle Scholar
  63. 63.
    Z. Yu, A.J. Jaworski, S. Backhaus, Appl. Energy 99, 135 (2012)CrossRefGoogle Scholar
  64. 64.
    M.E. Poese, Handbook of Climate Change Mitigation. Tech. Rep., New York, NY (2012)Google Scholar
  65. 65.
    J. Smoker, M. Nouh, O. Aldraihem, A. Baz, J. Appl. Phys. 111, 104901 (2012)CrossRefADSGoogle Scholar
  66. 66.
    M. Nouh, O. Aldraihem, A. Baz, J. Vibr. Acoustics 134, 061015 (2012)CrossRefGoogle Scholar
  67. 67.
    C. Jensen, R. Raspet, J. Acou. Soc. Am. 128, 98 (2010)CrossRefADSGoogle Scholar
  68. 68.
    J.D. Maynard, Anisotropic heat exchanger and stack, Tech. Rep. 0704, Penn State University (2002)Google Scholar
  69. 69.
    S.M. Grove, University of Plymouth (1985)Google Scholar
  70. 70.
    J.A. Adeff, T.J. Hofler, A.A. Atchley, W.C. Moss, 104, 32 (2014)Google Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • A.W. Avent
    • 1
  • C.R. Bowen
    • 1
  1. 1.Dept. Mechanical Engineering, University of BathClaverton DownUK

Personalised recommendations